Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(8)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39199141

RESUMO

The gut microbiota dysbiosis that often occurs in cancer therapy requires more efficient treatment options to be developed. In this concern, the present research approach is to develop drug delivery systems based on magnetite nanoparticles (MNPs) as nanocarriers for bioactive compounds. First, MNPs were synthesized through the spraying-assisted coprecipitation method, followed by loading bee pollen or bee bread extracts and an antitumoral drug (5-fluorouracil/5-FU). The loaded-MNPs were morphologically and structurally characterized through transmission electron microscopy (TEM), selected area electron diffraction (SAED), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Dynamic Light Scattering (DLS), and thermogravimetric analysis. UV-Vis spectroscopy was applied to establish the release profiles and antioxidant activity. Furthermore, the antibacterial and antitumoral activity of loaded-MNPs was assessed. The results demonstrate that MNPs with antioxidant, antibacterial, antiproliferative, and prebiotic properties are obtained. Moreover, the data highlight the improvement of 5-FU antibacterial activity by loading on the MNPs' surface and the synergistic effects between the anticancer drug and phenolic compounds (PCs). In addition, the prolonged release behavior of PCs for many hours (70-75 h) after the release of 5-FU from the developed nanocarriers is an advantage, at least from the point of view of the antioxidant activity of PCs. Considering the enhancement of L. rhamnosus MF9 growth and antitumoral activity, this study developed promising drug delivery alternatives for colorectal cancer therapy.

2.
Materials (Basel) ; 17(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38611986

RESUMO

Development of efficient controlled local release of drugs that prevent systemic side effects is a challenge for anti-osteoporotic treatments. Research for new bone-regeneration materials is of high importance. Strontium (Sr) is known as an anti-resorptive and anabolic agent useful in treating osteoporosis. In this study, we compared two different types of synthesis used for obtaining nano hydroxyapatite (HA) and Sr-containing nano hydroxyapatite (SrHA) for bone tissue engineering. Synthesis of HA and SrHA was performed using co-precipitation and hydrothermal methods. Regardless of the synthesis route for the SrHA, the intended content of Sr was 1, 5, 10, 20, and 30 molar %. The chemical, morphological, and biocompatibility properties of HA and SrHA were investigated. Based on our results, it was shown that HA and SrHA exhibited low cytotoxicity and demonstrated toxic behavior only at higher Sr concentrations.

3.
Membranes (Basel) ; 13(6)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37367795

RESUMO

Since the water pollution problem still affects the environmental system and human health, the need to develop innovative membranes has become imperious. Lately, researchers have focused on developing novel materials to help diminish the contamination problem. The aim of present research was to obtain innovative adsorbent composite membranes based on a biodegradable polymer, alginate, to remove toxic pollutants. Of all pollutants, lead was chosen due to its high toxicity. The composite membranes were successfully obtained through a direct casting method. The silver nanoparticles (Ag NPs) and caffeic acid (CA) from the composite membranes were kept at low concentrations, which proved enough to bestow antimicrobial activity to the alginate membrane. The obtained composite membranes were characterised by Fourier transform infrared spectroscopy and microscopy (FTIR), scanning electron microscopy (SEM), and thermogravimetric analysis (TG-DSC). Swelling behaviour, lead ion (Pb2+) removal capacity, regeneration and reusability were also determined. Further, the antimicrobial activity was tested against selected pathogenic strains (S. aureus, E. faecalis sp., P. aeruginosa, E. coli and C. albicans). The presence of Ag NPs and CA improves the antimicrobial activity of the newly developed membranes. Overall, the composite membranes are suitable for complex water treatment (removal of heavy metal ions and antimicrobial treatment).

4.
Polymers (Basel) ; 15(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37242827

RESUMO

In the present study, two chelating resins were prepared and used for simultaneous adsorption of toxic metal ions, i.e., Cr3+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Pb2+ (MX+). In the first step, chelating resins were prepared starting with styrene-divinylbenzene resin, a strong basic anion exchanger Amberlite IRA 402(Cl-) with two chelating agents, i.e., tartrazine (TAR) and amido black 10B (AB 10B). Key parameters such as contact time, pH, initial concentration, and stability were evaluated for the obtained chelating resins (IRA 402/TAR and IRA 402/AB 10B). The obtained chelating resins show excellent stability in 2M HCl, 2M NaOH, and also in ethanol (EtOH) medium. The stability of the chelating resins decreased when the combined mixture (2M HCl:EtOH = 2:1) was added. The above-mentioned aspect was more evident for IRA 402/TAR compared to IRA 402/AB 10B. Taking into account the higher stability of the IRA 402/TAR and IRA 402/AB 10B resins, in a second step, adsorption studies were carried out on complex acid effluents polluted with MX+. The adsorption of MX+ from an acidic aqueous medium on the chelating resins was evaluated using the ICP-MS method. The following affinity series under competitive analysis for IRA 402/TAR was obtained: Fe3+(44 µg/g) > Ni2+(39.8 µg/g) > Cd2+(34 µg/g) > Cr3+(33.2 µg/g) > Pb2+(32.7 µg/g) > Cu2+ (32.5 µg/g) > Mn2+(31 µg/g) > Co2+(29 µg/g) > Zn2+ (27.5 µg/g). While for IRA 402/AB 10B, the following behavior was observed: Fe3+(58 µg/g) > Ni2+(43.5 µg/g) > Cd2+(43 µg/g) > Cu2+(38 µg/g) > Cr3+(35 µg/g) > Pb2+(34.5 µg/g) > Co2+(32.8 µg/g) > Mn2+(33 µg/g) > Zn2+(32 µg/g), consistent with the decreasing affinity of MX+ for chelate resin. The chelating resins were characterized using TG, FTIR, and SEM analysis. The obtained results showed that the chelating resins prepared have promising potential for wastewater treatment in the context of the circular economy approach.

5.
Sci Total Environ ; 884: 163810, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37127150

RESUMO

In the last decades, increased intakes of contaminants and the habitats' destruction have produced drastic changes in the aquatic ecosystems. The environmental contaminants can accumulate in aquatic organisms, leading to the disturbance of the antioxidant/prooxidant balance in fish. In this context, we evaluated the level of organic, inorganic and microbiological pollutants in four leisure lakes (Chitila, Floreasca, Tei and Vacaresti) from Bucharest, the largest city of Romania, in order to compare their effects on hepatopancreas and gills metabolism and antioxidant defense mechanisms in Carassius gibelio, the most known and widespread freshwater fish in this country. The lowest level of oxidative stress was recorded in the case of fish collected from the Vacaresti lake, a protected wetland area where aquatic organisms live in wild environmental conditions. In contrast, significant oxidative changes were observed in the hepatopancreas and gills of fish from the Chitila, Floreasca and Tei lakes, such as reduced glutathione S-transferase activity and glutathione level, and increased degree of lipid peroxidation, being correlated with elevated levels of pesticides (such as 2,4'-methoxychlor) and Escherichia coli load in these organs. Although different patterns of pollutants' accumulation were observed, no important interindividual variations in cytosine methylation degree were determined. In conclusion, the presence and concentrations of metals, pesticides and antibiotics varied with the analyzed tissue and sampling site, and were correlated with changes in the cellular redox homeostasis, but without significantly affecting the epigenetic mechanisms.


Assuntos
Cyprinidae , Microbiota , Praguicidas , Poluentes Químicos da Água , Animais , Lagos , Antioxidantes/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Cyprinidae/metabolismo , Estresse Oxidativo , Glutationa/metabolismo , Praguicidas/metabolismo , Brânquias/metabolismo
6.
Pharmaceutics ; 15(4)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37111777

RESUMO

Achieving and maintaining a well-balanced immune system has righteously become an insightful task for the general population and an even more fundamental goal for those affected by immune-related diseases. Since our immune functions are indispensable in defending the body against pathogens, diseases and other external attacks, while playing a vital role in maintaining health and modulating the immune response, we require an on-point grasp of their shortcoming as a foundation for the development of functional foods and novel nutraceuticals. Seeing that immunoceuticals are considered effective in improving immune functions and reducing the incidence of immunological disorders, the main focus of this study was to assess the immunomodulatory properties and possible acute toxicity of a novel nutraceutical with active substances of natural origin on C57BL/6 mice for 21 days. We evaluated the potential hazards (microbial contamination and heavy metals) of the novel nutraceutical and addressed the acute toxicity according to OECD guidelines of a 2000 mg/kg dose on mice for 21 days. The immunomodulatory effect was assessed at three concentrations (50 mg/kg, 100 mg/kg and 200 mg/kg) by determining body and organ indexes through a leukocyte analysis; flow cytometry immunophenotyping of lymphocytes populations and their subpopulations (T lymphocytes (LyCD3+), cytotoxic suppressor T lymphocytes (CD3+CD8+), helper T lymphocytes (CD3+CD4+), B lymphocytes (CD3-CD19+) and NK cells (CD3-NK1.1.+); and the expression of the CD69 activation marker. The results obtained for the novel nutraceutical referred to as ImunoBoost indicated no acute toxicity, an increased number of lymphocytes and the stimulation of lymphocyte activation and proliferation, demonstrating its immunomodulatory effect. The safe human consumption dose was established at 30 mg/day.

7.
Int J Mol Sci ; 24(7)2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37047223

RESUMO

Numerous studies have reported the possibility of enhancing the properties of materials by incorporating foreign elements within their crystal lattice. In this context, while magnetite has widely known properties that have been used for various biomedical applications, the introduction of other metals within its structure could prospectively enhance its effectiveness. Specifically, zinc and cerium have demonstrated their biomedical potential through significant antioxidant, anticancer, and antimicrobial features. Therefore, the aim of the present study was to develop a series of zinc and/or cerium-substituted magnetite nanoparticles that could further be used in the medical sector. The nanostructures were synthesized through the co-precipitation method and their morpho-structural characteristics were evaluated through X-ray diffraction (XRD), inductively coupled plasma mass spectrometry (ICP-MS), X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS), zeta potential, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX) analyses. Furthermore, the nanostructures were subjected to a ROS-Glo H2O2 assay for assessing their antioxidant potential, MTT assay for determining their anticancer effects, and antimicrobial testing against S. aureus, P. aeruginosa, and C. albicans strains. Results have proven promising for future biomedical applications, as the nanostructures inhibit oxidative stress in normal cells, with between two- and three-fold reduction and cell proliferation in tumor cells; a two-fold decrease in cell viability and microbial growth; an inhibition zone diameter of 4-6 mm and minimum inhibitory concentration (MIC) of 1-2 mg/mL.


Assuntos
Anti-Infecciosos , Cério , Nanopartículas de Magnetita , Nanopartículas Metálicas , Zinco/farmacologia , Nanopartículas Metálicas/química , Staphylococcus aureus , Antioxidantes/farmacologia , Peróxido de Hidrogênio/farmacologia , Cério/farmacologia , Cério/química , Anti-Infecciosos/farmacologia , Difração de Raios X , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química
8.
Gels ; 9(4)2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37102906

RESUMO

The aim of the present study was to obtain a hydrogel-based film as a carrier for the sustained and controlled release of vancomycin, an antibiotic commonly used in various types of infections. Considering the high-water solubility of vancomycin (>50 mg/mL) and the aqueous medium underlying the exudates, a prolonged release of vancomycin from an MCM-41 carrier was sought. The present work focused on the synthesis of malic acid coated magnetite (Fe3O4/malic) by co-precipitation, synthesis of MCM-41 by a sol-gel method and loading of MCM-41 with vancomycin, and their use in alginate films for wound dressing. The nanoparticles obtained were physically mixed and embedded in the alginate gel. Prior to incorporation, the nanoparticles were characterized by XRD, FT-IR and FT-Raman spectroscopy, TGA-DSC and DLS. The films were prepared by a simple casting method and were further cross-linked and examined for possible heterogeneities by means of FT-IR microscopy and SEM. The degree of swelling and the water vapor transmission rate were determined, considering their potential use as wound dressings. The obtained films show morpho-structural homogeneity, sustained release over 48 h and a strong synergistic enhancement of the antimicrobial activity as a consequence of the hybrid nature of these films. The antimicrobial efficacy was tested against S. aureus, two strains of E. faecalis (including vancomycin-resistant Enterococcus, VRE) and C. albicans. The incorporation of magnetite was also considered as an external triggering component in case the films were used as a magneto-responsive smart dressing to stimulate vancomycin diffusion.

9.
Nanomaterials (Basel) ; 12(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36296787

RESUMO

Given the demanding use of controlled drug delivery systems, our attention was focused on developing a magnetic film that can be triggered in the presence of a magnetic field for both drug delivery and the actuating mechanism in micropump biomedical microelectromechanical systems (BioMEMS). Magnetic alginate films were fabricated in three steps: the co-precipitation of iron salts in an alkaline environment to obtain magnetite nanoparticles (Fe3O4), the mixing of the obtained nanoparticles with a sodium alginate solution containing glycerol as a plasticizer and folic acid as an active substance, and finally the casting of the final solution in a Petri dish followed by cross-linking with calcium chloride solution. Magnetite nanoparticles were incorporated in the alginate matrix because of the well-established biocompatibility of both materials, a property that would make the film convenient for implantable BioMEMS devices. The obtained film was analyzed in terms of its magnetic, structural, and morphological properties. To demonstrate the hypothesis that the magnetic field can be used to trigger drug release from the films, we studied the release profile in an aqueous medium (pH = 8) using a NdFeB magnet as a triggering factor.

10.
Molecules ; 27(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36080354

RESUMO

Since its first use as a drug delivery system, mesoporous silica has proven to be a surprisingly efficient vehicle due to its porous structure. Unfortunately, most synthesis methods are based on using large amounts of surfactants, which are then removed by solvent extraction or heat treatment, leading to an undesired environmental impact because of the generated by-products. Hence, in the present study, we followed the synthesis of a silica material with a wormhole-like pore arrangement, using two FDA-approved substances as templates, namely Tween-20 and starch. As far as we know, it is the first study using the Tween-20/starch combo as a template for mesoporous silica synthesis. Furthermore, we investigated whether the obtained material using this novel synthesis had any potential in using it as a DDS. The material was further analyzed by XRD, TEM, FT-IR, N2 adsorption/desorption, and DLS to investigate its physicochemical features. Vancomycin was selected as the active molecule based on the extensive research engaged towards improving its bioavailability for oral delivery. The drug was loaded onto the material by using three different approaches, assuming its full retention in the final system. Thermal analysis confirmed the successful loading of vancomycin by all means, and pore volume significantly decreased upon loading, especially in the case of the vacuum-assisted method. All methods showed a slower release rate compared to the same amount of the pure drug. Loadings by physical mixing and solvent evaporation released the whole amount of the drug in 140 min, and the material loaded by the vacuum-assisted method released only 68.2% over the same period of time, leading us to conclude that vancomycin was adsorbed deeper inside the pores. The kinetic release of the three systems followed the Higuchi model for the samples loaded by physical mixing and vacuum-assisted procedures, while the solvent evaporation loading method was in compliance with the first-order model.


Assuntos
Dióxido de Silício , Vancomicina , Adsorção , Portadores de Fármacos/química , Polissorbatos , Porosidade , Dióxido de Silício/química , Solubilidade , Solventes , Espectroscopia de Infravermelho com Transformada de Fourier , Amido
11.
Membranes (Basel) ; 12(8)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36005719

RESUMO

As it is used in all aspects of human life, water has become more and more polluted. For the past few decades, researchers and scientists have focused on developing innovative composite adsorbent membranes for water purification. The purpose of this research was to synthesize a novel composite adsorbent membrane for the removal of toxic pollutants (namely heavy metals, antibiotics and microorganisms). The as-synthesized chitosan/TiO2 composite membranes were successfully prepared through a simple casting method. The TiO2 nanoparticle concentration from the composite membranes was kept low, at 1% and 5%, in order not to block the functional groups of chitosan, which are responsible for the adsorption of metal ions. Nevertheless, the concentration of TiO2 must be high enough to bestow good photocatalytic and antimicrobial activities. The synthesized composite membranes were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and swelling capacity. The antibacterial activity was determined against four strains, Escherichia coli, Citrobacter spp., Enterococcus faecalis and Staphylococcus aureus. For the Gram-negative strains, a reduction of more than 5 units log CFU/mL was obtained. The adsorption capacity for heavy metal ions was maximum for the chitosan/TiO2 1% composite membrane, the retention values being 297 mg/g for Pb2+ and 315 mg/g for Cd2+ ions. These values were higher for the chitosan/TiO2 1% than for chitosan/TiO2 5%, indicating that a high content of TiO2 can be one of the reasons for modest results reported previously in the literature. The photocatalytic degradation of a five-antibiotic mixture led to removal efficiencies of over 98% for tetracycline and meropenem, while for vancomycin and erythromycin the efficiencies were 86% and 88%, respectively. These values indicate that the chitosan/TiO2 composite membranes exhibit excellent photocatalytic activity under visible light irradiation. The obtained composite membranes can be used for complex water purification processes (removal of heavy metal ions, antibiotics and microorganisms).

12.
Artigo em Inglês | MEDLINE | ID: mdl-35742758

RESUMO

Fish are able to accumulate by ingestion various contaminants of aquatic environment, with negative consequences on their intestine, being continuously threatened worldwide by heavy metals, pesticides and antibiotics resulted from the human activities. Consequently, the health of other species can be affected by eating the contaminated fish meat. In this context, our study aimed to perform a comparison between the changes in intestine samples of Carassius gibelio individuals collected from different artificial lakes in Bucharest (Romania), used by people for leisure and fishing. The presence of various metals, pesticides and antibiotics in the gut of fish was assessed in order to correlate their accumulation with changes of antioxidative enzymes activities and microbiome. Our results showed that fish from Bucharest lakes designed for leisure (Chitila, Floreasca and Tei lakes) have an increased level of oxidative stress in intestine tissue, revealed by affected antioxidant enzymes activities and GSH levels, as well as the high degree of lipid peroxidation, compared to the fish from protected environment (Vacaresti Lake). Some heavy metals (Fe, Ni and Pb) and pesticides (aldrin and dieldrin) were in high amount in the gut of fish with modified antioxidative status. In conclusion, our study could improve the knowledge regarding the current state of urban aquatic pollution in order to impose several environmental health measures.


Assuntos
Cyprinidae , Microbioma Gastrointestinal , Metais Pesados , Praguicidas , Poluentes Químicos da Água , Animais , Antibacterianos , Antioxidantes , Monitoramento Ambiental/métodos , Humanos , Lagos , Metais Pesados/análise , Poluentes Químicos da Água/análise
13.
Foods ; 11(11)2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35681386

RESUMO

Nutraceuticals are experiencing a high-rise use nowadays, which is incomparable to a few years ago, due to a shift in consumers' peculiarity tendencies regarding the selection of alternatives to Western medicine, potential immunity boosters, or gut-health promoters. Nutraceuticals' compositions and actual effects should be proportional to their sought-after status, as they are perceived to be the middle ground between pharma rigor and naturally occurring actives. Therefore, the health benefits via nutrition, safe use, and reduction of potential harm should be the main focus for manufacturers. In this light, this study assess the nutritional profile (proteins, fats, fibers, caloric value, minerals) of a novel formulated nutraceutical, its physico-chemical properties, FTIR spectra, antioxidant activity, anthocyanins content, and potential hazards (heavy metals and microbiological contaminants), as well as its cytotoxicity, adherence, and invasion of bacteria on HT-29 cells, as well as its evaluation of beneficial effect, potential prebiotic value, and duplicity effect on gut microbiota in correlation with Regulation (EC) No 1924/2006. The results obtained indicate the growth stimulation of Lb. rhamnosus and the inhibitory effects of E.coli, Ent. Faecalis and Lc. lactis. The interaction between active compounds suggested a modulator effect of the intestinal microbiota by reducing the number of bacteria that adhere to epithelial cells or by inhibiting their growth.

14.
Pharmaceutics ; 14(5)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35631644

RESUMO

The current trend in antimicrobial-agent development focuses on the use of natural compounds that limit the toxicity of conventional drugs and provide a potential solution to the antimicrobial resistance crisis. Curcumin represents a natural bioactive compound with well-known antimicrobial, anticancer, and antioxidant properties. However, its hydrophobicity considerably limits the possibility of body administration. Therefore, dextran-coated iron oxide nanoparticles can be used as efficient drug-delivery supports that could overcome this limitation. The iron oxide nanoparticles were synthesized through the microwave-assisted hydrothermal method by varying the treatment parameters (pressure and reaction time). The nanoparticles were subsequently coated with dextran and used for the loading of curcumin (in various concentrations). The drug-delivery systems were characterized through X-ray diffraction (XRD) coupled with Rietveld refinement, transmission electron microscopy (TEM), high-resolution TEM (HR-TEM), selected area electron diffraction (SAED), dynamic light scattering (DLS) and zeta potential, thermogravimetry and differential scanning calorimetry (TG-DSC), vibrating sample magnetometry (VSM), and UV-Vis spectrophotometry, as well as regarding their antimicrobial efficiency and biocompatibility using the appropriate assays. The results demonstrate a promising antimicrobial efficiency, as well as an increased possibility of controlling the properties of the resulted nanosystems. Thus, the present study represents an important step forward toward the development of highly efficient antimicrobial drug-delivery systems.

15.
Micromachines (Basel) ; 13(3)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35334643

RESUMO

Microelectromechanical systems (MEMS) have been increasingly used worldwide in a wide range of applications, including high tech, energy, medicine or environmental applications. Magnetic polymer composite films have been used extensively in the development of the micropumps and valves, which are critical components of the microelectromechanical systems. Based on the literature survey, several polymers and magnetic micro and nanopowders can be identified and, depending on their nature, ratio, processing route and the design of the device, their performances can be tuned from simple valves and pumps to biomimetic devices, such as, for instance, hearth ventricles. In many such devices, polymer magnetic films are used, the disposal of the magnetic component being either embedded into the polymer or coated on the polymer. One or more actuation zones can be used and the flow rate can be mono-directional or bi-directional depending on the design. In this paper, we review the main advances in the development of these magnetic polymer films and derived MEMS: microvalve, micropump, micromixer, microsensor, drug delivery micro-systems, magnetic labeling and separation microsystems, etc. It is important to mention that these MEMS are continuously improving from the point of view of performances, energy consumption and actuation mechanism and a clear tendency in developing personalized treatment. Due to the improved energy efficiency of special materials, wearable devices are developed and be suitable for medical applications.

16.
Nanomaterials (Basel) ; 11(12)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34947526

RESUMO

This work describes a new synthesis method for core-shell magnetite nanoparticles with a secondary silica shell, functionalized with a linker system (Fe3O4-PABA-SiO2-linker) using a microwave-assisted heating technique. The functionalized solid nanomaterial was used for the nanophase synthesis of peptides (Fmoc route) as a solid support. The co-precipitation method was selected to obtain magnetite nanoparticles and sol-gel technique for silica coating using a microwave-assisted (MW) procedure. The magnetic properties of the nanoparticle core offer the advantage of a quick and easy alternative for the magnetic separation of the product from the reaction mixture, facilitating all the intermediary washing and separation operations. The intermediate and final materials were analyzed by advanced characterization methods. The effectiveness of the nanophase peptide synthesis using this nanostructured material as solid support was demonstrated for a short peptide sequence.

17.
Pharmaceutics ; 13(5)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922739

RESUMO

This study investigates the usage of electrohydrodynamic (EHD)-3D printing for the fabrication of bacterial cellulose (BC)/polycaprolactone (PCL) patches loaded with different antibiotics (amoxicillin (AMX), ampicillin (AMP), and kanamycin (KAN)) for transdermal delivery. The composite patches demonstrated facilitated drug loading and encapsulation efficiency of drugs along with extended drug release profiles. Release curves were also subjected to model fitting, and it was found that drug release was optimally adapted to the Higuchi square root model for each drug. They performed a time-dependent and diffusion-controlled release from the patches and followed Fick's diffusion law by the Korsmeyer-Peppas energy law equation. Moreover, produced patches demonstrated excellent antimicrobial activity against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) strains, so they could be helpful in the treatment of chronic infectious lesions during wound closures. As different tests have confirmed, various types of antibiotics could be loaded and successfully released regardless of their types from produced BC/PCL patches. This study could breathe life into the production of antibiotic patches for local transdermal applications in wound dressing studies and improve the quality of life of patients.

18.
Materials (Basel) ; 13(7)2020 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-32260385

RESUMO

The scope of this article is to develop composite membranes using chitosan (CS) and graphene oxide (GO) as adsorbents for the removal of inorganic pollutants such as heavy metal ions, particularly Pb2+, from aqueous solutions. GO was obtained by modified Hummers method and blended with CS solution. The introduction of ethylenediaminetetraacetic acid (EDTA) compound to CS/GO suspension lead to an increased adsorption capacity of CS/GO for the elimination of heavy metals by forming stable chelates with them. The synthesized membranes were examined by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), and the adsorption behaviour of Pb2+ from aqueous solutions using CS/EDTA/GO membranes was evaluated using inductively coupled plasma mass spectrometry (ICP-MS). The adsorption performance of Pb2+ ions was studied by monitoring the concentration of Pb2+ against the adsorption period at an initial content of the adsorbent. The maximum adsorption efficiency of Pb2+ metal ions reached 767 mg·g-1 for CS/EDTA/GO 0.1%, 889 mg·g-1 for CS/EDTA/GO 0.3%, 970 mg·g-1 for CS/EDTA, 853 mg·g-1 for CS and 1526 mg·g-1 for GO. These findings show promising potential for CS/EDTA/GO membranes as effective adsorbent materials for the removal of heavy metal ions in water.

19.
Materials (Basel) ; 9(5)2016 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-28773468

RESUMO

The aim of this work was to obtain an antimicrobial coating (NanoAg) for polyester-nylon wound dressings (WDs) for reducing the risk of exogenous wound related infections. The as-prepared NanoAg-WDs were characterized by XRD (X-ray Diffraction), SEM (Scanning Electron Microscopy), TEM (Transmission Electron Microscopy), SAED (Selected Area Electron Diffraction) and IRM (InfraRed Microscopy). Biological characterization consisted of in vitro evaluation of the interaction with fibroblast cell cultures and in vivo biodistribution studies of AgNPs on mice models. Then, specimens of commercial WDs were immersed in a glucose and NaOH solution of silver nanoparticles, followed by the subsequent dropwise addition of AgNO3 solution. The antimicrobial efficiency of the NanoAg-WDs was assessed by in vitro qualitative and quantitative analyses on Staphylococcus aureus and Pseudomonas aeruginosa strains. The in vitro and in vivo studies demonstrated that the tested nanoparticles utilized to coat WDs have a good biocompatibility, allowing the normal development of cultured human cells and revealing a normal biodistribution within a mouse model, without toxic effects. The modified and viable cells count analyses proved that the modified WDs exhibit an improved inhibitory activity of microbial colonization, attachment and biofilm growth. The reported data recommend this type of coatings to obtain modified WDs with antibacterial properties, able to prevent the exogenous microbial contamination of the wound tissue, colonization and further biofilm development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...