Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Dev Sci ; : e13538, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949566

RESUMO

Impaired numerosity perception in developmental dyscalculia (low "number acuity") has been interpreted as evidence of reduced representational precision in the neurocognitive system supporting non-symbolic number sense. However, recent studies suggest that poor numerosity judgments might stem from stronger interference from non-numerical visual information, in line with alternative accounts that highlight impairments in executive functions and visuospatial abilities in the etiology of dyscalculia. To resolve this debate, we used a psychophysical method designed to disentangle the contribution of numerical and non-numerical features to explicit numerosity judgments in a dot comparison task and we assessed the relative saliency of numerosity in a spontaneous categorization task. Children with dyscalculia were compared to control children with average mathematical skills matched for age, IQ, and visuospatial memory. In the comparison task, the lower accuracy of dyscalculics compared to controls was linked to weaker encoding of numerosity, but not to the strength of non-numerical biases. Similarly, in the spontaneous categorization task, children with dyscalculia showed a weaker number-based categorization compared to the control group, with no evidence of a stronger influence of non-numerical information on category choice. Simulations with a neurocomputational model of numerosity perception showed that the reduction of representational resources affected the progressive refinement of number acuity, with little effect on non-numerical bias in numerosity judgments. Together, these results suggest that impaired numerosity perception in dyscalculia cannot be explained by increased interference from non-numerical visual cues, thereby supporting the hypothesis of a core number sense deficit. RESEARCH HIGHLIGHTS: A strongly debated issue is whether impaired numerosity perception in dyscalculia stems from a deficit in number sense or from poor executive and visuospatial functions. Dyscalculic children show reduced precision in visual numerosity judgments and weaker number-based spontaneous categorization, but no increasing reliance on continuous visual properties. Simulations with deep neural networks demonstrate that reduced neural/computational resources affect the developmental trajectory of number acuity and account for impaired numerosity judgments. Our findings show that weaker number acuity in developmental dyscalculia is not necessarily related to increased interference from non-numerical visual cues.

2.
Behav Res Methods ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750387

RESUMO

While several methods have been proposed to assess the influence of continuous visual cues in parallel numerosity estimation, the impact of temporal magnitudes on sequential numerosity judgments has been largely ignored. To overcome this issue, we extend a recently proposed framework that makes it possible to separate the contribution of numerical and non-numerical information in numerosity comparison by introducing a novel stimulus space designed for sequential tasks. Our method systematically varies the temporal magnitudes embedded into event sequences through the orthogonal manipulation of numerosity and two latent factors, which we designate as "duration" and "temporal spacing". This allows us to measure the contribution of finer-grained temporal features on numerosity judgments in several sensory modalities. We validate the proposed method on two different experiments in both visual and auditory modalities: results show that adult participants discriminated sequences primarily by relying on numerosity, with similar acuity in the visual and auditory modality. However, participants were similarly influenced by non-numerical cues, such as the total duration of the stimuli, suggesting that temporal cues can significantly bias numerical processing. Our findings highlight the need to carefully consider the continuous properties of numerical stimuli in a sequential mode of presentation as well, with particular relevance in multimodal and cross-modal investigations. We provide the complete code for creating sequential stimuli and analyzing participants' responses.

3.
Front Hum Neurosci ; 15: 750582, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35058763

RESUMO

The number of elements in a small set of items is appraised in a fast and exact manner, a phenomenon called subitizing. In contrast, humans provide imprecise responses when comparing larger numerosities, with decreasing precision as the number of elements increases. Estimation is thought to rely on a dedicated system for the approximate representation of numerosity. While previous behavioral and neuroimaging studies associate subitizing to a domain-general system related to object tracking and identification, the nature of small numerosity processing is still debated. We investigated the neural processing of numerosity across subitizing and estimation ranges by examining electrophysiological activity during the memory retention period in a delayed numerical match-to-sample task. We also assessed potential differences in the neural signature of numerical magnitude in a fully non-symbolic or cross-format comparison. In line with behavioral performance, we observed modulation of parietal-occipital neural activity as a function of numerosity that differed in two ranges, with distinctive neural signatures of small numerosities showing clear similarities with those observed in visuospatial working memory tasks. We also found differences in neural activity related to numerical information in anticipation of single vs. cross-format comparison, suggesting a top-down modulation of numerical processing. Finally, behavioral results revealed enhanced performance in the mixed-format conditions and a significant correlation between task performance and symbolic mathematical skills. Overall, we provide evidence for distinct mechanisms related to small and large numerosity and differences in numerical encoding based on task demands.

4.
Sci Rep ; 10(1): 10045, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32572067

RESUMO

Numerosity perception is thought to be foundational to mathematical learning, but its computational bases are strongly debated. Some investigators argue that humans are endowed with a specialized system supporting numerical representations; others argue that visual numerosity is estimated using continuous magnitudes, such as density or area, which usually co-vary with number. Here we reconcile these contrasting perspectives by testing deep neural networks on the same numerosity comparison task that was administered to human participants, using a stimulus space that allows the precise measurement of the contribution of non-numerical features. Our model accurately simulates the psychophysics of numerosity perception and the associated developmental changes: discrimination is driven by numerosity, but non-numerical features also have a significant impact, especially early during development. Representational similarity analysis further highlights that both numerosity and continuous magnitudes are spontaneously encoded in deep networks even when no task has to be carried out, suggesting that numerosity is a major, salient property of our visual environment.


Assuntos
Aprendizagem , Conceitos Matemáticos , Percepção Visual , Adulto , Aprendizado Profundo , Feminino , Humanos , Masculino , Redes Neurais de Computação , Psicofísica , Aprendizado de Máquina não Supervisionado , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...