Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202408345, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888253

RESUMO

Membrane materials that resist nonspecific or specific adsorption are urgently required in widespread applications. In water purification, inevitable membrane fouling not only limits separation performance, but also remarkably increases operation requirements, and augments extra maintenance costs and higher energy consumption. In this work, we report a freestanding interfacial polymerization (IP) fabrication strategy for in-situ creation of asymmetric block copolymer (BCP) nanofilms with antifouling properties, greatly outperforming the conventional surface post-modification approaches. The resultant asymmetric BCP nanofilms with highly-dense, highly-hydrophilic polyethylene glycol (PEG) brushes, can be readily formed via a typical IP process of a double-hydrophilic BCP composed of an antifouling PEG block and a membrane-forming multiamine block. The asymmetric BCP nanofilms have been applied for efficient and sustainable natural water purification, demonstrating extraordinary antifouling capabilities accompanied with superior separation performance far beyond commercial polyamide nanofiltration membranes. The antifouling behaviors of BCP nanofilms derived from the combined effect of the hydration layer, electrostatic repulsion and steric hindrance were further elucidated by water flux and fouling resistance in combination with all-atom molecular dynamics simulation. This work opens up a new avenue for large-scale and low-cost creation of broad-spectrum, asymmetric membrane materials with diverse functional "defect-free" surfaces in real-world applications.

2.
Nat Biomed Eng ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714892

RESUMO

Messenger RNA vaccines lack specificity for dendritic cells (DCs)-the most effective cells at antigen presentation. Here we report the design and performance of a DC-targeting virus-like particle pseudotyped with an engineered Sindbis-virus glycoprotein that recognizes a surface protein on DCs, and packaging mRNA encoding for the Spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or for the glycoproteins B and D of herpes simplex virus 1. Injection of the DC-targeting SARS-CoV-2 mRNA vaccine in the footpad of mice led to substantially higher and durable antigen-specific immunoglobulin-G titres and cellular immune responses than untargeted virus-like particles and lipid-nanoparticle formulations. The vaccines also protected the mice from infection with SARS-CoV-2 or with herpes simplex virus 1. Virus-like particles with preferential uptake by DCs may facilitate the development of potent prophylactic and therapeutic vaccines.

3.
ACS Appl Mater Interfaces ; 15(35): 41817-41827, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37622994

RESUMO

To achieve efficient gene delivery in vitro or in vivo, nonviral vectors should have excellent biostability across cellular and tissue barriers and also smart stimuli responsiveness toward controlled release of therapeutic genes into the cell nucleus. However, it remains a key challenge to effectively combine the biostability of covalent polymers with the stimuli responsiveness of noncovalent polymers into one nonviral vehicle. In this work, we report the construction of a kind of cationic supramolecular block copolymers (SBCs) through noncovalent polymerization of ß-cyclodextrin/azobenzene-terminated pentaethylenehexamine (DMA-Azo-PEHA-ß-CD) in aqueous media using ß-CD-monosubstituted poly(ethylene glycol) (PEG-ß-CD) as a supramolecular initiator. The resultant SBC exhibits superior biostability, biocompatibility, and light/pH dual-responsive characteristics, and it also demonstrates efficient plasmid DNA condensation capacity and the ability to rapidly release plasmid DNA into cells driven by visible light (450 nm). Eventually, this SBC-based delivery system demonstrates visible light-induced enhancement of gene delivery in both COS-7 and HeLa cells. We anticipate that this work provides a facile and robust strategy to enhance gene delivery in vitro or in vivo via visible light-guided manipulation of genes, further achieving safe, highly efficient, targeting gene therapy for cancer.


Assuntos
Técnicas de Transferência de Genes , Luz , Polímeros , Células HeLa , Humanos , Polietilenoglicóis , Células COS , Animais , Chlorocebus aethiops , Células MCF-7
4.
Chem Soc Rev ; 52(5): 1529-1548, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36786068

RESUMO

Digital synthetic polymers with uniform chain lengths and defined monomer sequences have recently become intriguing alternatives to traditional silicon-based information devices or natural biomacromolecules for data storage. The structural diversity of information-containing macromolecules endows the digital synthetic polymers with higher stability and storage density but less occupied space. Through subtly designing each unit of coded structure, the information can be readily encoded into digital synthetic polymers in a more economical scheme and more decodable, opening up new avenues for molecular digital data storage with high-level security. This tutorial review summarizes recent advances in salient features of digital synthetic polymers for data storage, including encoding, decoding, editing, erasing, encrypting, and repairing. The current challenges and outlook are finally discussed to offer potential solution guidance and new perspectives for the creation of next-generation digital synthetic polymers and broaden the scope of their applicability.

5.
Science ; 377(6614): 1555-1561, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36173852

RESUMO

Hydrocarbon separation relies on energy-intensive distillation. Membrane technology can offer an energy-efficient alternative but requires selective differentiation of crude oil molecules with rapid liquid transport. We synthesized multiblock oligomer amines, which comprised a central amine segment with two hydrophobic oligomer blocks, and used them to fabricate hydrophobic polyamide nanofilms by interfacial polymerization from self-assembled vesicles. These polyamide nanofilms provide transport of hydrophobic liquids more than 100 times faster than that of conventional hydrophilic counterparts. In the fractionation of light crude oil, manipulation of the film thickness down to ~10 nanometers achieves permeance one order of magnitude higher than that of current state-of-the-art hydrophobic membranes while retaining comparable size- and class-based separation. This high permeance can markedly reduce plant footprint, which expands the potential for using membranes made of ultrathin nanofilms in crude oil fractionation.

6.
Nature ; 609(7925): 58-64, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36045237

RESUMO

Polymer membranes are widely used in separation processes including desalination1, organic solvent nanofiltration2,3 and crude oil fractionation4,5. Nevertheless, direct evidence of subnanometre pores and a feasible method of manipulating their size is still challenging because of the molecular fluctuations of poorly defined voids in polymers6. Macrocycles with intrinsic cavities could potentially tackle this challenge. However, unfunctionalized macrocycles with indistinguishable reactivities tend towards disordered packing in films hundreds of nanometres thick7-9, hindering cavity interconnection and formation of through-pores. Here, we synthesized selectively functionalized macrocycles with differentiated reactivities that preferentially aligned to create well-defined pores across an ultrathin nanofilm. The ordered structure was enhanced by reducing the nanofilm thickness down to several nanometres. This orientated architecture enabled direct visualization of subnanometre macrocycle pores in the nanofilm surfaces, with the size tailored to ångström precision by varying the macrocycle identity. Aligned macrocycle membranes provided twice the methanol permeance and higher selectivity compared to disordered counterparts. Used in high-value separations, exemplified here by enriching cannabidiol oil, they achieved one order of magnitude faster ethanol transport and threefold higher enrichment than commercial state-of-the-art membranes. This approach offers a feasible strategy for creating subnanometre channels in polymer membranes, and demonstrates their potential for accurate molecular separations.

7.
J Mater Chem B ; 8(36): 8219-8231, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32803207

RESUMO

Supramolecular block copolymers (SBCs) have received considerable interest in polymer chemistry, materials science, biomedical engineering and nanotechnology owing to their unique structural and functional advantages, such as low cytotoxicity, outstanding biodegradability, smart environmental responsiveness, and so forth. SBCs comprise two or more different homopolymer subunits linked by noncovalent bonds, and these polymers, in particular, combine the dynamically reversible nature of supramolecular polymers with the hierarchical microphase-separated structures of block polymers. A rapidly increasing number of publications on the synthesis and applications of SBCs have been reported in recent years; however, a systematic summary of the design, synthesis, properties and applications of SBCs has not been published. To this end, this review provides a brief overview of the recent advances in SBCs and describes the synthesis strategies, properties and functions, and their widespread applications in drug delivery, gene delivery, protein delivery, bioimaging and so on. In this review, we aim to elucidate the general concepts and structure-property relationships of SBCs, as well as their practical bioapplications, shedding further valuable insights into this emerging research field.


Assuntos
Polímeros/química , Animais , Sistemas de Liberação de Medicamentos/métodos , Técnicas de Transferência de Genes , Humanos , Polímeros/síntese química , Medicina de Precisão/métodos
8.
Nat Chem ; 11(2): 184, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30622342

RESUMO

In the version of this Article originally published, the authors inadvertently cited ref. 10 in two places in the first paragraph. They would like to clarify that it should not have been cited in the sentence that starts "Polymer chemists have employed strategies such as single monomer insertion..." as it mistakenly implied that the IEG+ method described in ref. 10 could not produce unimolecular polymers; it can do so, as was demonstrated in ref. 10. The authors would also like to clarify that ref. 10 should not have been cited in the sentence that starts "Moreover, solid-phase synthesis is generally difficult to scale up...", as it implied that ref. 10 uses solid-phase synthesis; it does not, and is a purely liquid-phase process. The citation of ref. 10 has now been removed from these two sentences, but has been included elsewhere in the first two paragraphs of the Article as follows. In the first paragraph, at the end of the sentence "In iterative synthesis, specific monomers are added one at a time, or as multiples, to the end of a growing polymer chain, then reaction debris is separated from the chain extended polymer, and the cycle is repeated using the next monomer in the sequence10-12."; this sentence has been further amended to indicate multiple monomers can also be added. The reference has also been added to the end of the first sentence of the second paragraph, which starts "Consequently, liquid-phase iterative synthetic methods...", and in the third sentence of that paragraph, which now starts "For example, Johnson10, Whiting....".

9.
Nat Chem ; 11(2): 136-145, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30510218

RESUMO

Synthetic chemists have devoted tremendous effort towards the production of precision synthetic polymers with defined sequences and specific functions. However, the creation of a general technology that enables precise control over monomer sequence, with efficient isolation of the target polymers, is highly challenging. Here, we report a robust strategy for the production of sequence-defined synthetic polymers through a combination of liquid-phase synthesis and selective molecular sieving. The polymer is assembled in solution with real-time monitoring to ensure couplings proceed to completion, on a three-armed star-shaped macromolecule to maximize efficiency during the molecular sieving process. This approach is applied to the construction of sequence-defined polyethers, with side-arms at precisely defined locations that can undergo site-selective modification after polymerization. Using this versatile strategy, we have introduced structural and functional diversity into sequence-defined polyethers, unlocking their potential for real-life applications in nanotechnology, healthcare and information storage.

10.
Chem Commun (Camb) ; 53(95): 12782-12785, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29139491

RESUMO

A class of cationic supramolecular block copolymers with readily controlled charges has been exploited. Upon post-synthetic structural optimization, this copolymer exhibits comparable biocompatibility, greatly improved pDNA condensation capability and biostability, and further enhanced transfection efficiency in vitro. This work provides valuable insight into the creation of advanced nonviral vectors for gene delivery.


Assuntos
DNA/genética , Etilenodiaminas/química , Técnicas de Transferência de Genes , Polímeros/química , Animais , Células COS , Cátions/química , Cátions/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Etilenodiaminas/farmacologia , Vetores Genéticos/química , Células HeLa , Humanos , Células MCF-7 , Substâncias Macromoleculares/química , Substâncias Macromoleculares/farmacologia , Plasmídeos , Polímeros/farmacologia , Transfecção
11.
ACS Appl Mater Interfaces ; 9(10): 9006-9014, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28233991

RESUMO

The design and fabrication of safe and highly efficient nonviral vectors is the key scientific issue for the achievement of clinical gene therapy. Supramolecular cationic polymers have unique structures and specific functions compared to covalent cationic polymers, such as low cytotoxicity, excellent biodegradability, and smart environmental responsiveness, thereby showing great application prospect for gene therapy. However, supramolecular gene vectors are facile to be degraded under physiological conditions, leading to a significant reduction of gene transfection efficiency. In order to achieve highly efficient gene expression, it is necessary for supramolecular gene vectors being provided with appropriate biostability to overcome various cell obstacles. To this end, a novel cationic supramolecular block copolymer composed of a conventional polymer and a noncovalent polymer was constructed through robust ß-cyclodextrin/ferrocene host-guest recognition. The resultant supramolecular block copolymer perfectly combines the advantages of both conventional polymers and supramolecular polymers ranging from structures to functions. This supramolecular copolymer not only has the ability to effectively condense pDNA for enhanced cell uptake, but also releases pDNA inside cancer cells triggered by H2O2, which can be utilized as a prospective nonviral delivery vehicle for gene delivery. The block polymer exhibited low cytotoxicity, good biostability, excellent biodegradability, and intelligent responsiveness, ascribing to the dynamic/reversible nature of noncovalent linkages. In vitro studies further illustrated that the supramolecular block polymer exhibited greatly improved gene transfection efficiency in cancer cells. This work offers an alternative platform for the exploitation of smart nonviral vehicles for specific cancer gene therapy in the future.


Assuntos
Técnicas de Transferência de Genes , Cátions , Peróxido de Hidrogênio , Polímeros , Transfecção
12.
Chem Commun (Camb) ; 52(51): 7950-3, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27251637

RESUMO

Dual-responsive aggregation-induced emission-active supramolecular fluorescent nanoparticles are reported, which have the ability to undergo a unique morphological transition combining with a cooperative optical variation in response to pH and light stimuli. The dynamic supramolecular nanoparticles show excellent biocompatibility and effective plasmid DNA condensation capability, further achieving efficient in vitro gene delivery and bioimaging.


Assuntos
DNA/química , Corantes Fluorescentes/química , Técnicas de Transferência de Genes , Nanopartículas/química , Imagem Óptica , Concentração de Íons de Hidrogênio , Luz , Substâncias Macromoleculares/química , Plasmídeos
13.
Chemistry ; 21(32): 11427-34, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26133314

RESUMO

Overabundance of hydrogen peroxide originating from environmental stress and/or genetic mutation can lead to pathological conditions. Thus, the highly sensitive detection of H2 O2 is important. Herein, supramolecular fluorescent nanoparticles self-assembled from fluorescein isothiocyanate modified ß-cyclodextrin (FITC-ß-CD)/rhodamine B modified ferrocene (Fc-RB) amphiphile were prepared through host-guest interaction between FITC-ß-CD host and Fc-RB guest for H2 O2 detection in cancer cells. The self-assembled nanoparticles based on a combination of multiple non-covalent interactions in aqueous medium showed high sensitivity to H2 O2 while maintaining stability under physiological condition. Owing to the fluorescence resonance energy transfer (FRET) effect, addition of H2 O2 led to obvious fluorescence change of nanoparticles from red (RB) to green (FITC) in fluorescent experiments. In vitro study showed the fluorescent nanoparticles could be efficiently internalized by cancer cells and then disrupted by endogenous H2 O2 , accompanying with FRET from "on" to "off". These supramolecular fluorescent nanoparticles constructed via multiple non-covalent interactions are expected to have potential applications in diagnosis and imaging of diseases caused by oxidative stresses.


Assuntos
Fluoresceína-5-Isotiocianato/química , Corantes Fluorescentes/metabolismo , Peróxido de Hidrogênio/metabolismo , Nanopartículas/química , Neoplasias/química , Tiocianatos/química , beta-Ciclodextrinas/química , Fluorescência , Transferência Ressonante de Energia de Fluorescência/métodos , Corantes Fluorescentes/química , Humanos , Peróxido de Hidrogênio/química , Imagem Molecular/métodos , Neoplasias/metabolismo , Espectrometria de Fluorescência , Água , beta-Ciclodextrinas/metabolismo
14.
Biomater Sci ; 3(7): 937-54, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26221932

RESUMO

As a novel class of three-dimensional (3D) hydrophilic cross-linked polymers, supramolecular hydrogels not only display unique physicochemical properties (e.g., water-retention ability, drug loading capacity, biodegradability and biocompatibility, biostability) as well as specific functionalities (e.g., optoelectronic properties, bioactivity, self-healing ability, shape memory ability), but also have the capability to undergo reversible gel-sol transition in response to various environmental stimuli inherent to the noncovalent cross-linkages, thereby showing great potential as promising biomaterial scaffolds for diagnosis and therapy. In this Review, we summarized the recent progress in the design and synthesis of supramolecular hydrogels through specific, directional noncovalent interactions, with particular emphasis on the structure-property relationship, as well as their wide-ranging applications in disease diagnosis and therapy including bioimaging, biodetection, therapeutic delivery, and tissue engineering. We believe that these current achievements in supramolecular hydrogels will greatly stimulate new ideas and inspire persistent efforts in this hot topic area in future.


Assuntos
Materiais Biocompatíveis/química , Ciclodextrinas/química , Hidrogéis/síntese química , Polímeros/química , Sistemas de Liberação de Medicamentos , Humanos , Hidrogéis/química , Interações Hidrofóbicas e Hidrofílicas , Engenharia Tecidual/métodos
15.
Adv Mater ; 27(3): 498-526, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25393728

RESUMO

As a novel class of dynamic and non-covalent polymers, supramolecular polymers not only display specific structural and physicochemical properties, but also have the ability to undergo reversible changes of structure, shape, and function in response to diverse external stimuli, making them promising candidates for widespread applications ranging from academic research to industrial fields. By an elegant combination of dynamic/reversible structures with exceptional functions, functional supramolecular polymers are attracting increasing attention in various fields. In particular, functional supramolecular polymers offer several unique advantages, including inherent degradable polymer backbones, smart responsiveness to various biological stimuli, and the ease for the incorporation of multiple biofunctionalities (e.g., targeting and bioactivity), thereby showing great potential for a wide range of applications in the biomedical field. In this Review, the trends and representative achievements in the design and synthesis of supramolecular polymers with specific functions are summarized, as well as their wide-ranging biomedical applications such as drug delivery, gene transfection, protein delivery, bio-imaging and diagnosis, tissue engineering, and biomimetic chemistry. These achievements further inspire persistent efforts in an emerging interdisciplin-ary research area of supramolecular chemistry, polymer science, material science, biomedical engineering, and nanotechnology.


Assuntos
Polímeros/química , Polímeros/uso terapêutico , Animais , Humanos , Polímeros/síntese química
16.
Chem Commun (Camb) ; 50(81): 11994-2017, 2014 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-25019489

RESUMO

Noncovalent interactions provide a flexible method of engineering various chemical entities with tailored properties. Specific noncovalent interactions between functionalized small molecules, macromolecules or both of them bearing complementary binding sites can be used to engineer supramolecular complexes that display unique structure and properties of polymers, which can be defined as supramolecularly engineered polymers. Due to their dynamic tunable structures and interesting physical/chemical properties, supramolecularly engineered polymers have recently received more and more attention from both academia and industry. In this feature article, we summarize the recent progress in the self-assembly of supramolecularly engineered polymers as well as their biomedical applications. In view of different molecular building units, the supramolecularly engineered polymers can be classified into the following three major types: supramolecularly engineered polymers built by small molecules, supramolecularly engineered polymers built by small molecules and macromolecules, and supramolecularly engineered polymers built by macromolecules, which possess distinct morphologies, definite architectures and specific functions. Owing to the reversible nature of the noncovalent interactions, the supramolecularly engineered polymers have exhibited unique features or advantages in molecular self-assembly, for example, facile preparation and functionalization, controllable morphologies and structures, dynamic self-assembly processes, adjustable performance, and so on. Furthermore, the self-assembled supramolecular structures hold great potential as promising candidates in various biomedical fields, including bioimaging, drug delivery, gene transfection, protein delivery, regenerative medicine and tissue engineering. Such developments in the self-assembly of supramolecularly engineered polymers and their biomedical applications greatly promote the interdiscipline research among supramolecular chemistry, polymer materials, biomedicine, nano-science and technology.


Assuntos
Polímeros/química , Medicina Regenerativa , Meios de Contraste/química , Ciclodextrinas/química , Portadores de Fármacos/química , Géis/química , Técnicas de Transferência de Genes , Humanos , Nanopartículas/química , Polietilenoglicóis/química , Engenharia Tecidual
17.
Soft Matter ; 10(33): 6121-38, 2014 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-25046479

RESUMO

Photo-responsive polymeric micelles have received increasing attention in both academic and industrial fields due to their efficient photo-sensitive nature and unique nanostructure. In view of the photo-reaction mechanism, photo-responsive polymeric micelles can be divided into five major types: (1) photoisomerization polymeric micelles, (2) photo-induced rearrangement polymeric micelles, (3) photocleavage polymeric micelles, (4) photo-induced crosslinkable polymeric micelles, and (5) photo-induced energy conversion polymeric micelles. This review highlights the recent advances of photo-responsive polymeric micelles, including the design, synthesis and applications in various biomedical fields. Especially, the influence of different photo-reaction mechanisms on the morphology, structure and properties of the polymeric micelles is emphasized. Finally, the possible future directions and perspectives in this emerging area are briefly discussed.


Assuntos
Micelas , Polímeros/química , Sistemas de Liberação de Medicamentos , Luz , Processos Fotoquímicos , Polímeros/síntese química
18.
Acc Chem Res ; 47(7): 2006-16, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24779892

RESUMO

CONSPECTUS: Supramolecular dendritic polymers (SDPs), which perfectly combine the advantages of dendritic polymers with those of supramolecular polymers, are a novel class of non-covalently bonded, highly branched macromolecules with three-dimensional globular topology. Because of their dynamic/reversible nature, unique topological structure, and exceptional physical/chemical properties (e.g., low viscosity, high solubility, and a large number of functional terminal groups), SDPs have attracted increasing attention in recent years in both academic and industrial fields. In particular, the reversibility of non-covalent interactions endows SDPs with the ability to undergo dynamic switching of structure, morphology, and function in response to various external stimuli, such as pH, temperature, light, stress, and redox agents, which further provides a flexible and robust platform for designing and developing smart supramolecular polymeric materials and functional supramolecular devices. The existing SDPs can be systematically classified into the following six major types according to their topological features: supramolecular dendrimers, supramolecular dendronized polymers, supramolecular hyperbranched polymers, supramolecular linear-dendritic block copolymers, supramolecular dendritic-dendritic block copolymers, and supramolecular dendritic multiarm copolymers. These different types of SDPs possess distinct morphologies, unique architectures, and specific functions. Benefiting from their versatile topological structures as well as stimuli-responsive properties, SDPs have displayed not only unique characteristics or advantages in supramolecular self-assembly behaviors (e.g., controllable morphologies, specific performance, and facile functionalization) but also great potential to be promising candidates in various fields. In this Account, we summarize the recent progress in the synthesis, functionalization, and self-assembly of SDPs as well as their potential applications in a wide range of fields. A variety of synthetic methods using non-covalent interactions have been established to prepare different types of SDPs based on varied mono- or multifunctionalized building blocks (e.g., monomer, dendron, dendrimer, and hyperbranched polymer) with homo- or heterocomplementary units. In addition, SDPs can be further endowed with excellent functionalities by employing different modification approaches involving terminal, focal-point, and backbone modification. Similar to conventional dendritic polymers, SDPs can self-assemble into diverse supramolecular structures such as micelles, vesicles, fibers, nanorings, tubes, and many hierarchical structures. Finally, we highlight some typical examples of recent applications of SDP-based systems in biomedical fields (e.g., controlled drug/gene/protein delivery, bioimaging, and biomimetic chemistry), nanotechnology (e.g., nanoreactors, catalysis, and molecular imprinting), and functional materials. The current research on SDPs is still at the very early stage, and much more work needs to be done. We anticipate that future studies of SDPs will focus on developing multifunctional, hierarchical supramolecular materials toward their practical applications by utilization of cooperative non-covalent interactions.

19.
Biomacromolecules ; 15(5): 1828-36, 2014 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-24750012

RESUMO

A novel targeting cancer imaging platform based on aptamer-functionalized amphiphilic hyperbranched copolymer conjugates, which can self-assemble into nanoscopic micelles with a core-shell structure and a narrow size distribution, has been designed and synthesized. The size, morphology, fluorescence performance, and cytotoxicity of micelles were studied by dynamic light scattering, transmission electron microscopy, fluorescence spectroscopy, and a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colorimetric assay. The results indicate that these micelles have low cytotoxicity against MCF-7 cells and can be easily internalized by MCF-7 cells. In addition, they also exhibit enhanced cell uptake, excellent fluorescence properties, and smart targeting capability in vitro, indicating great potential to be promising carriers for bioimaging and cancer specific delivery.


Assuntos
Aptâmeros de Nucleotídeos/química , Neoplasias da Mama/metabolismo , Imagem Molecular/métodos , Polímeros/síntese química , Tensoativos/química , Animais , Aptâmeros de Nucleotídeos/metabolismo , Aptâmeros de Nucleotídeos/farmacologia , Neoplasias da Mama/patologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Endocitose , Humanos , Células MCF-7 , Camundongos , Estrutura Molecular , Células NIH 3T3 , Nanopartículas/química , Nanopartículas/toxicidade , Tamanho da Partícula , Polímeros/química , Polímeros/metabolismo , Polímeros/farmacologia , Propriedades de Superfície , Tensoativos/metabolismo , Tensoativos/farmacologia
20.
Nanoscale ; 6(9): 4544-50, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24667930

RESUMO

A porphyrin-based amphiphile that exhibits various self-assembled nanostructures in different solvents has been successfully prepared. The effect of aggregated structure on optical properties of this amphiphile has been well investigated. Furthermore, this porphyrin-based amphiphile and its assemblies show dynamic/reversible variations in morphology and optical properties in response to light.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...