Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Front Biosci (Landmark Ed) ; 29(6): 226, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38940036

RESUMO

BACKGROUND: L-Theanine, a nonproteinogenic amino acid derived from green tea, is being recognized as an anti-cancer candidate. However, it's roles in the development of cancer chemoresistance is still unknown and the molecular mechanism is urgently to be explored. METHODS: The effects of L-Theanine on lung cancer chemoresistance were validated by Cell Counting Kit-8 (CCK-8) assay, transwell assay, and in vitro tumor spheroid formation assay; the expression of proteins was detected by using polymerase chain reaction (PCR) and western blotting. RNA-sequencing (RNA-seq) and bioinformatics analysis were used to identify differentially expressed genes induced by L-Theanine. BMAL1 knockdown and overexpression were constructed by using a lentivirus-mediated transfection system. RESULTS: L-Theanine improved the chemoresistance to cis-diamminedichloroplatinum (DDP) and inhibited stemness of DDP-resistant lung cancer cells but not non-resistant lung cancer cells. The results from RNA-seq analysis showed that STAT3/NOTCH1 pathway was a potential dominant signaling involved in L-Theanine improving the chemoresistance in DDP-resistant lung cancer. Mechanistically, L-Theanine impeded migration and stemness activation of DDP-resistant lung cancer cells via regulating the expression of STAT3/NOTCH1/BMAL1 signaling-induced stemness markers as well as inhibiting the expression levels of drug resistance-related genes. In addition, a combination of L-Theanine and Stat3 blockade synergistically improved the chemoresistance in DDP-resistant lung cancer. CONCLUSION: L-Theanine improves the chemoresistance by regulating STAT3/NOTCH1/BMAL1 signaling, reducing stemness, and inhibiting the migration of DDP-resistant lung cancer cells. The finding might provide some evidence for therapeutic options in overcoming the chemoresistance in cancers, including lung cancer.


Assuntos
Fatores de Transcrição ARNTL , Cisplatino , Resistencia a Medicamentos Antineoplásicos , Glutamatos , Neoplasias Pulmonares , Receptor Notch1 , Fator de Transcrição STAT3 , Transdução de Sinais , Humanos , Glutamatos/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Cisplatino/farmacologia , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Transdução de Sinais/efeitos dos fármacos , Receptor Notch1/metabolismo , Receptor Notch1/genética , Linhagem Celular Tumoral , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células A549 , Movimento Celular/efeitos dos fármacos
2.
Artigo em Inglês | MEDLINE | ID: mdl-37180750

RESUMO

Background: Chronic obstructive pulmonary disease (COPD) has higher mortality when developing to acute exacerbation (AECOPD); hence, the early intervention of COPD is critical for preventing AECOPD. Exploring the serum metabolites associated with acute exacerbation in patients with COPD will contribute to the early intervention of COPD. Methods: In the study, a non-targeted metabolomics strategy combined with multivariate statistical methods was performed to explore the metabolic profiling of COPD developing acute exacerbation, to screen the potential metabolites associated with AECOPD and to analyze the potential value of these metabolites in predicting the development of COPD. Results: Serum lysine, glutamine, 3-hydroxybutyrate, pyruvate and glutamate levels were significantly higher, while 1-methylhistidine, isoleucine, choline, valine, alanine, histidine and leucine levels were significantly lower in AECOPD patients, compared with stable COPD patients after normalization based on the healthy controls. Moreover, eight metabolic pathways were significantly altered (P<0.05) in the serum of AECOPD patients compared with the stable COPD population, including purine metabolism, glutamine and glutamate metabolism, arginine biosynthesis, butyrate metabolism, ketone body synthesis and degradation, and linoleic acid metabolism. In addition, the correlation analysis between metabolites and AECOPD patients demonstrated that an M-score based on a weighted sum of concentrations of four metabolites including pyruvate, isoleucine, 1-methylhistidine and glutamine were significantly associated with the acute exacerbation of pulmonary ventilation function in COPD patients. Conclusion: Altogether, the metabolite score based on a weighted sum of concentrations of four serum metabolites was associated with an increased risk of COPD developing acute exacerbation, which will provide a new insight for the understanding of COPD development.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Progressão da Doença , Glutamina , Isoleucina , Piruvatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...