Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39131367

RESUMO

Group B Streptococcus (GBS) is a Gram-positive pathobiont that commonly colonizes the gastrointestinal and lower female genital tracts but can cause sepsis and pneumonia in newborns and is a leading cause of neonatal meningitis. Despite the resulting disease severity, the pathogenesis of GBS is not completely understood, especially during the early phases of infection. To investigate GBS factors necessary for blood stream survival, we performed a transposon (Tn) mutant screen in our bacteremia infection model using a GBS mariner transposon mutant library previously developed by our group. We identified significantly underrepresented mutations in 628 genes that contribute to survival in the blood, including those encoding known virulence factors such as capsule, the ß-hemolysin, and inorganic metal ion transport systems. Most of the underrepresented genes have not been previously characterized or studied in GBS, including gloA and gloB, which are homologs for genes involved in methylglyoxal (MG) detoxification. MG is a byproduct of glycolysis and a highly reactive toxic aldehyde that is elevated in immune cells during infection. Here, we observed MG sensitivity across multiple GBS isolates and confirm that gloA contributes to MG tolerance and invasive GBS infection. We show specifically that gloA contributes to GBS survival in the presence of neutrophils and depleting neutrophils in mice abrogates the decreased survival and infection of the gloA mutant. The requirement of the glyoxalase pathway during GBS infection suggests that MG detoxification is important for bacterial survival during host-pathogen interactions.

2.
mBio ; : e0208824, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39189749

RESUMO

Group B Streptococcus (GBS) asymptomatically colonizes the vagina but can opportunistically ascend to the uterus and be transmitted vertically during pregnancy, resulting in neonatal pneumonia, bacteremia, and meningitis. GBS is a leading etiologic agent of neonatal infection and understanding the mechanisms by which GBS persists within the polymicrobial female genital mucosa has the potential to mitigate subsequent transmission and disease. Type VIIb secretion systems (T7SSb) are encoded by Bacillota and often mediate interbacterial competition using LXG toxins that contain conserved N-termini important for secretion and variable C-terminal toxin domains that confer diverse biochemical activities. Our recent work characterized a role for the GBS T7SSb in vaginal colonization and ascending infection but the mechanisms by which the T7SSb promotes GBS persistence in this polymicrobial niche remain unknown. Herein, we investigate the GBS T7SS in interbacterial competition and GBS niche establishment in the female genital tract. We demonstrate GBS T7SS-dependent inhibition of mucosal pathobiont Enterococcus faecalis both in vitro using predator-prey assays and in vivo in the murine genital tract and found that a GBS LXG protein encoded within the T7SS locus (herein named group B streptococcal LXG Toxin A) contributes to these phenotypes. We identify BltA as a T7SS substrate that is toxic to E. coli and S. aureus upon induction of intracellular expression along with associated chaperones. Finally, we show that BltA and its chaperones contribute to GBS vaginal colonization. Altogether, these data reveal a role for a novel T7b-secreted toxin in GBS mucosal persistence and competition.IMPORTANCECompetition between neighboring, non-kin bacteria is essential for microbial niche establishment in mucosal environments. Gram-positive bacteria encoding T7SSb have been shown to engage in competition through the export of LXG-motif-containing toxins, but these have not been characterized in group B Streptococcus (GBS), an opportunistic colonizer of the polymicrobial female genital tract. Here, we show a role for GBS T7SS in competition with mucosal pathobiont Enterococcus faecalis, both in vitro and in vivo. We further find that a GBS LXG protein contributing to this antagonism is exported by the T7SS and is intracellularly toxic to other bacteria; therefore, we have named this protein group B streptococcal LXG Toxin A (BltA). Finally, we show that BltA and its associated chaperones promote persistence within female genital tract tissues, in vivo. These data reveal previously unrecognized mechanisms by which GBS may compete with other mucosal opportunistic pathogens to persist within the female genital tract.

3.
bioRxiv ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38915665

RESUMO

Group B Streptococcus (GBS) asymptomatically colonizes the vagina but can opportunistically ascend to the uterus and be transmitted vertically during pregnancy, resulting in neonatal pneumonia, bacteremia and meningitis. GBS is a leading etiologic agent of neonatal infection and understanding the mechanisms by which GBS persists within the polymicrobial female genital mucosa has potential to mitigate subsequent transmission and disease. Type VIIb secretion systems (T7SSb) are encoded by Firmicutes and often mediate interbacterial competition using LXG toxins that contain conserved N-termini important for secretion and variable C-terminal toxin domains that confer diverse biochemical activities. Our recent work characterized a role for the GBS T7SSb in vaginal colonization and ascending infection but the mechanisms by which the T7SSb promotes GBS persistence in this polymicrobial niche remain unknown. Herein, we investigate the GBS T7SS in interbacterial competition and GBS niche establishment in the female genital tract. We demonstrate GBS T7SS-dependent inhibition of mucosal pathobiont Enterococcus faecalis both in vitro using predator-prey assays and in vivo in the murine genital tract and found that a GBS LXG protein encoded within the T7SS locus (herein named group B streptococcal LXG Toxin A) that contributes to these phenotypes. We identify BltA as a T7SS substrate that is toxic to E. coli and S. aureus upon induction of expression along with associated chaperones. Finally, we show that BltA and its chaperones contribute to GBS vaginal colonization. Altogether, these data reveal a role for a novel T7b-secreted toxin in GBS mucosal persistence and competition.

4.
Sci Adv ; 10(22): eadn7848, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38809989

RESUMO

Streptococcus agalactiae [group B Streptococcus (GBS)] is a leading cause of neonatal meningitis, with late-onset disease (LOD) occurring after gastrointestinal tract colonization in infants. Bacterial membrane lipids are essential for host-pathogen interactions, and the functions of glycolipids are yet to be fully elucidated. GBS synthesizes three major glycolipids: glucosyl-diacylglycerol (Glc-DAG), diglucosyl-DAG (Glc2-DAG), and lysyl-Glc-DAG (Lys-Glc-DAG). Here, we identify the enzyme, IagB, as responsible for biosynthesis of Glc-DAG, the precursor for the two other glycolipids in GBS. To examine the collective role of glycolipids to GBS virulence, we adapted a murine model of neonatal meningitis to simulate LOD. The GBS∆iagB mutant traversed the gut-epithelial barrier comparable to wild type but was severely attenuated in bloodstream survival, resulting in decreased bacterial loads in the brain. The GBS∆iagB mutant was more susceptible to neutrophil killing and membrane targeting by host antimicrobial peptides. This work reveals an unexplored function of GBS glycolipids with their ability to protect the bacterial cell from host antimicrobial killing.


Assuntos
Glicolipídeos , Infecções Estreptocócicas , Streptococcus agalactiae , Streptococcus agalactiae/patogenicidade , Streptococcus agalactiae/imunologia , Streptococcus agalactiae/metabolismo , Animais , Glicolipídeos/metabolismo , Glicolipídeos/imunologia , Camundongos , Virulência , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Humanos , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno/imunologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Mutação
5.
FEMS Microbes ; 5: xtae013, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38783991

RESUMO

Diabetic wound infections including diabetic foot ulcers (DFUs) are a major global health concern and a leading cause of non-traumatic amputations. Numerous bacterial species establish infection in DFUs, and treatment with antibiotics often fails due to widespread antibiotic resistance and biofilm formation. Determination of bacterial species that reside in DFU and their virulence potential is critical to inform treatment options. Here, we isolate bacteria from debridement tissues from patients with diabetes at the University of Colorado Anschutz Medical Center. The most frequent species were Gram-positive including Enterococcus faecalis, Staphylococcus aureus, and Streptococcus agalactiae, also known as Group B Streptococcus (GBS). Most tissues had more than one species isolated with E. faecalis and GBS frequently occurring in polymicrobial infection with S. aureus. S. aureus was the best biofilm producing species with E. faecalis and GBS isolates exhibiting little to no biofilm formation. Antibiotic susceptibility varied amongst strains with high levels of penicillin resistance amongst S. aureus, clindamycin resistance amongst GBS and intermediate vancomycin resistance amongst E. faecalis. Finally, we utilized a murine model of diabetic wound infection and found that the presence of S. aureus led to significantly higher recovery of GBS and E. faecalis compared to mice challenged in mono-infection.

7.
Microbiol Resour Announc ; 13(1): e0073323, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38099685

RESUMO

Group B Streptococcus (GBS) is known to colonize the female reproductive tract and causes adverse pregnancy outcomes and neonatal disease. DNA methylation is a common mechanism for both phage defense and transcriptional regulation. Here, we report the m6A and m4C methylomes of four clinical GBS isolates, CJB111, A909, COH1, and NEM316.

8.
mBio ; : e0230623, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37905908

RESUMO

Group B Streptococcus (GBS) colonizes the female reproductive tract (FRT) and causes adverse pregnancy outcomes and invasive disease following vertical transmission to the fetus or newborn. Despite this major public health burden, the mechanisms of GBS FRT colonization are understudied. A recent transposon sequencing screen identified GBS factors contributing to vaginal colonization and ascending spread, including a putative DNA-cytosine methyltransferase (Dcm). We constructed a Δdcm deletion strain and confirmed that dcm contributes to murine FRT colonization. Investigation of the evolutionary origin of the dcm gene reveals that it is widely distributed across GBS and is encoded as part of a prophage genome that displays evidence of horizontal transfer between GBS strains. We further show that Dcm contributes to 5mC methylation and global regulation of genes involved in carbohydrate metabolism, transcription regulation, and known adhesins and metabolic factors involved in GBS colonization. Interestingly, GBS genes that are induced in the presence of the highly glycosylated vaginal mucin MUC5B were significantly downregulated in the ∆dcm mutant. Furthermore, the ∆dcm mutant exhibited reduced binding to immobilized mucin and was attenuated in its ability to grow on numerous carbon sources including the carbohydrates found on mucins. While the ∆dcm mutant displayed enhanced clearance from the FRT in wild-type mice, there was no significant difference in MUC5B -/- mice, indicating that Dcm-mediated regulation requires MUC5B to promote GBS colonization. This is the first report to characterize the impact of a DNA methyltransferase on GBS gene regulation and FRT colonization. IMPORTANCE Group B Streptococcus (GBS) colonizes the female reproductive tract (FRT) in one-third of women, and carriage leads to numerous adverse pregnancy outcomes including the preterm premature rupture of membranes, chorioamnionitis, and stillbirth. The presence of GBS in the FRT during pregnancy is also the largest predisposing factor for the transmission of GBS and invasive neonatal diseases, including pneumonia, sepsis, and meningitis. The factors contributing to GBS colonization are still being elucidated. Here, we show for the first time that GBS transcription is regulated by an orphan DNA cytosine methyltransferase (Dcm). Many GBS factors are regulated by Dcm, especially those involved in carbohydrate transport and metabolism. We show that GBS persistence in the FRT is dependent on the catabolism of sugars found on the vaginal mucin MUC5B. Collectively, this work highlights the regulatory importance of a DNA methyltransferase and identifies both host and bacterial factors required for GBS colonization.

9.
Mol Microbiol ; 120(2): 258-275, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37357823

RESUMO

Type VIIb secretion systems (T7SSb) in Gram-positive bacteria facilitate physiology, interbacterial competition, and/or virulence via EssC ATPase-driven secretion of small ɑ-helical proteins and toxins. Recently, we characterized T7SSb in group B Streptococcus (GBS), a leading cause of infection in newborns and immunocompromised adults. GBS T7SS comprises four subtypes based on variation in the C-terminus of EssC and the repertoire of downstream effectors; however, the intraspecies diversity of GBS T7SS and impact on GBS-host interactions remains unknown. Bioinformatic analysis indicates that GBS T7SS loci encode subtype-specific putative effectors, which have low interspecies and inter-subtype homology but contain similar domains/motifs and therefore may serve similar functions. We further identify orphaned GBS WXG100 proteins. Functionally, we show that GBS T7SS subtype I and III strains secrete EsxA in vitro and that in subtype I strain CJB111, esxA1 appears to be differentially transcribed from the T7SS operon. Furthermore, we observe subtype-specific effects of GBS T7SS on host colonization, as CJB111 subtype I but not CNCTC 10/84 subtype III T7SS promotes GBS vaginal colonization. Finally, we observe that T7SS subtypes I and II are the predominant subtypes in clinical GBS isolates. This study highlights the potential impact of T7SS heterogeneity on host-GBS interactions.


Assuntos
Infecções Estreptocócicas , Sistemas de Secreção Tipo VII , Recém-Nascido , Feminino , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Tipo VII/genética , Virulência , Óperon/genética , Genitália Feminina/metabolismo , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/genética , Streptococcus agalactiae/metabolismo , Vagina/metabolismo , Vagina/microbiologia
10.
mBio ; 14(4): e0030423, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37358277

RESUMO

Group B Streptococcus (GBS) is a Gram-positive pathobiont that can cause adverse health outcomes in neonates and vulnerable adult populations. GBS is one of the most frequently isolated bacteria from diabetic (Db) wound infections but is rarely found in the non-diabetic (nDb) wound environment. Previously, RNA sequencing of wound tissue from Db wound infections in leprdb diabetic mice showed increased expression of neutrophil factors, and genes involved in GBS metal transport such as the zinc (Zn), manganese (Mn), and putative nickel (Ni) import systems. Here, we develop a Streptozotocin-induced diabetic wound model to evaluate the pathogenesis of two invasive strains of GBS, serotypes Ia and V. We observe an increase in metal chelators such as calprotectin (CP) and lipocalin-2 during diabetic wound infections compared to nDb. We find that CP limits GBS survival in wounds of non-diabetic mice but does not impact survival in diabetic wounds. Additionally, we utilize GBS metal transporter mutants and determine that the Zn, Mn, and putative Ni transporters in GBS are dispensable in diabetic wound infection but contributed to bacterial persistence in non-diabetic animals. Collectively, these data suggest that in non-diabetic mice, functional nutritional immunity mediated by CP is effective at mitigating GBS infection, whereas in diabetic mice, the presence of CP is not sufficient to control GBS wound persistence. IMPORTANCE Diabetic wound infections are difficult to treat and often become chronic due to an impaired immune response as well as the presence of bacterial species that establish persistent infections. Group B Streptococcus (GBS) is one of the most frequently isolated bacterial species in diabetic wound infections and, as a result, is one of the leading causes of death from skin and subcutaneous infection. However, GBS is notoriously absent in non-diabetic wounds, and little is known about why this species thrives in diabetic infection. The work herein investigates how alterations in diabetic host immunity may contribute to GBS success during diabetic wound infection.


Assuntos
Diabetes Mellitus Experimental , Infecções Estreptocócicas , Infecção dos Ferimentos , Camundongos , Animais , Neutrófilos , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...