Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 10: 1594, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31354681

RESUMO

Lumpfish can efficiently remove sea lice from Atlantic salmon in net-pens, and production of lumpfish in closed fish farms is a new, fast developing industry in Norway. However, periodic outbreaks of bacterial diseases in the fish farms represent a large problem, both economically and ethically. Therefore it is important to obtain a better understanding of how microbial communities develop in these production facilities. Knowledge on the characteristics of microbial communities associated with healthy fish could also enable detection of changes associated with disease outbreaks at an early stage. In this study we have monitored microbial communities in a fish farm for lumpfish during normal operational conditions with no disease outbreak by using 16S rRNA gene amplicon sequencing. The study involved weekly samplings of water and biofilms from fish tanks, and fish. The results revealed that the microbial communities in fish tank water were different from the intake water. The water and biofilm in fish tanks were highly similar in regards to microbial community members, but with large differences in relative abundances for some taxa. The sampled fish were associated with mostly the same taxa as in tank water and biofilm, but more variation in relative abundances of different taxonomic groups occurred. The microbial communities in the fish farm seemed stable over time, and were dominated by marine bacteria and archaea within Alphaproteobacteria, Epsilonproteobacteria, Flavobacteria, Gammaproteobacteria, Thaumarchaeota, Planctomycetes, Sphingobacteriia, and Verrucomicrobiae (>10% relative abundance). Bacterial genera known to include fish-pathogenic strains were detected in all types of sample materials, but with low relative abundances (<5%). Exceptions were some samples of fish, biofilm and water with high relative abundance of Tenacibaculum (<85.8%) and Moritella (<82%). In addition, some of the eggs had a high relative abundance of Tenacibaculum (<89.5%). Overall, this study shows that a stable microbial community dominated by various genera of non-pathogenic bacteria is associated with a healthy environment for rearing lumpfish. Taxa with pathogenic members were also part of the microbial communities during healthy conditions, but the stable non-pathogenic bacteria may limit their growth and thereby prevent disease outbreaks.

2.
Front Microbiol ; 6: 987, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26441916

RESUMO

In this study we characterized and sequenced the genome of Arcobacter anaerophilus strain IR-1 isolated from enrichment cultures used in nitrate-amended corrosion experiments. A. anaerophilus IR-1 could grow lithoautotrophically on hydrogen and hydrogen sulfide and lithoheterothrophically on thiosulfate and elemental sulfur. In addition, the strain grew organoheterotrophically on yeast extract, peptone, and various organic acids. We show for the first time that Arcobacter could grow on the complex organic substrate tryptone and oxidize acetate with elemental sulfur as electron acceptor. Electron acceptors utilized by most Epsilonproteobacteria, such as oxygen, nitrate, and sulfur, were also used by A. anaerophilus IR-1. Strain IR-1 was also uniquely able to use iron citrate as electron acceptor. Comparative genomics of the Arcobacter strains A. butzleri RM4018, A. nitrofigilis CI and A. anaerophilus IR-1 revealed that the free-living strains had a wider metabolic range and more genes in common compared to the pathogen strain. The presence of genes for NAD(+)-reducing hydrogenase (hox) and dissimilatory iron reduction (fre) were unique for A. anaerophilus IR-1 among Epsilonproteobacteria. Finally, the new strain had an incomplete denitrification pathway where the end product was nitrite, which is different from other Arcobacter strains where the end product is ammonia. Altogether, our study shows that traditional characterization in combination with a modern genomics approach can expand our knowledge on free-living Arcobacter, and that this complementary approach could also provide invaluable knowledge about the physiology and metabolic pathways in other Epsilonproteobacteria from various environments.

3.
Environ Sci Technol ; 48(15): 8627-35, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25020005

RESUMO

Heavy carbon steel corrosion developed during nitrate mitigation of a flow rig connected to a water injection pipeline flowing anaerobe saline aquifer water. Genera-specific QPCR primers quantified 74% of the microbial biofilm community, and further 87% of the community of the nonamended parallel rig. The nonamended biofilm hosted 6.3 × 10(6) SRB cells/cm(2) and the S(35)-sulfate-reduction rate was 1.1 µmol SO4(2-)/cm(2)/day, being congruent with the estimated SRB biomass formation and the sulfate areal flux. Nitrate amendment caused an 18-fold smaller SRB population, but up to 44 times higher sulfate reduction rates. This H2S formation was insufficient to form the observed Fe3S4 layer. Additional H2S was provided by microbial disproportionation of sulfur, also explaining the increased accessibility of sulfate. The reduced nitrate specie nitrite inhibited the dominating H2-scavenging Desulfovibrio population, and sustained the formation of polysulfide and Fe3S4, herby also dissolved sulfur. This terminated the availability of acetate in the inner biofilm and caused cell starvation that initiated growth upon metallic electrons, probably by the sulfur-reducing Desulfuromonas population. On the basis of these observations we propose a model of heavy nitrate corrosion where three microbiological processes of nitrate reduction, disproportionation of sulfur, and metallic electron growth are nicely woven into each other.


Assuntos
Biofilmes/efeitos dos fármacos , Consórcios Microbianos , Nitratos/farmacologia , Aço/química , Bactérias Redutoras de Enxofre/efeitos dos fármacos , Anaerobiose , Bactérias Anaeróbias , Corrosão , Desulfovibrio , Água Subterrânea , Ferro , Modelos Teóricos , Oxirredução , Salinidade , Sulfatos , Sulfetos , Enxofre , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...