Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38961623

RESUMO

Proton circuits within biological membranes, the foundation of natural bioenergetic systems, are significantly influenced by the lipid compositions of different biological membranes. In this study, we investigate the influence of mixed lipid membrane composition on the proton transfer (PT) properties on the surface of the membrane. We track the excited-state PT (ESPT) process from a tethered probe to the membrane with time-scales and length-scales of PT relevant to bioenergetic systems. Two processes can happen during ESPT: the initial PT from the probe to the membrane at short timescales, followed by diffusion of dissociated protons around the probe on the membrane, and the possible geminate recombination with the probe at longer timescales. Here, we use membranes composed of mixtures of phosphatidylcholine (PC) and phosphatidic acid (PA). We show that the changes in the ESPT properties are not monotonous with the concentration of the lipid mixture; at low concentration of PA in PC, we find that the membrane is a poor proton acceptor. Molecular dynamics simulations indicate that the membrane is more structured at this specific lipid mixture with the least defects. Accordingly, we suggest that the structure of the membrane is an important factor in facilitating PT. We further show that the composition of the membrane affects the geminate proton diffusion around the probe, whereas, on a time-scale of tens of nanoseconds, the dissociated proton is mostly lateral restricted to the membrane plane in PA membranes, while in PC, the diffusion is less restricted by the membrane.

2.
Biophys J ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822521

RESUMO

The asymmetry of membranes has a significant impact on their biophysical characteristics and behavior. This study investigates the composition and mechanical properties of symmetric and asymmetric membranes in giant unilamellar vesicles (GUVs) made of palmitoyloleoyl phosphatidylcholine (POPC) and palmitoyloleoyl phosphatidic acid (POPA). A combination of fluorescence quantification, zeta potential measurements, micropipette aspiration, and bilayer molecular dynamics simulations are used to characterize these membranes. The outer leaflet composition in vesicles is found consistent across the two preparation methods we employed, namely electroformation and inverted emulsion transfer. However, characterizing the inner leaflet poses challenges. Micropipette aspiration of GUVs show that oil residues do not substantially alter membrane elasticity, but simulations reveal increased membrane thickness and decreased interleaflet coupling in the presence of oil. Asymmetric membranes with a POPC:POPA mixture in the outer leaflet and POPC in the inner leaflet display similar stretching elasticity values to symmetric POPC:POPA membranes, suggesting potential POPA insertion into the inner leaflet during vesicle formation and suppressed asymmetry. The inverse compositional asymmetry, with POPC in the outer leaflet and POPC:POPA in the inner one yield less stretchable membranes with higher compressibility modulus compared with their symmetric counterparts. Challenges in achieving and predicting compositional correspondence highlight the limitations of phase-transfer-based methods. In addition, caution is advised when using fluorescently labeled lipids (even at low fractions of 0.5 mol %), as unexpected gel-like domains in symmetric POPC:POPA membranes were observed only with a specific type of labeled DOPE (dioleoylphosphatidylethanolamine) and the same fraction of unlabeled DOPE. The latter suggest that such domain formation may result from interactions between lipids and membrane fluorescent probes. Overall, this study underscores the complexity of factors influencing GUV membrane asymmetry, emphasizing the need for further research and improvement of characterization techniques.

3.
J Chem Inf Model ; 64(10): 4204-4217, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38733348

RESUMO

Membranes─cells' essential scaffolds─are valid molecular targets for substances with an antimicrobial effect. While certain substances, such as octenidine, have been developed to target membranes for antimicrobial purposes, the recently reported molecule, fabimycin (F2B)─a novel agent targeting drug-resistant Gram-negative bacteria─has not received adequate attention regarding its activity on membranes in the literature. The following study aims to investigate the effects of F2B on different bacterial membrane models, including simple planar bilayers and more complex bilayer systems that mimic the Escherichia coli shell equipped with double inner and outer bilayers. Our results show that F2B exhibited more pronounced interactions with bacterial membrane systems compared to the control PC system. Furthermore, we observed significant changes in local membrane property homeostasis in both the inner and outer membrane models, specifically in the case of lateral diffusion, membrane thickness, and membrane resilience (compressibility, tilt). Finally, our results showed that the effect of F2B differed in a complex system and a single membrane system. Our study provides new insights into the multifaceted activity of F2B, demonstrating its potential to disrupt bacterial membrane homeostasis, indicating that its activity extends the currently known mechanism of FabI enzyme inhibition. This disruption, coupled with the ability of F2B to penetrate the outer membrane layers, sheds new light on the behavior of this antimicrobial molecule. This highlights the importance of the interaction with the membrane, crucial in combating bacterial infections, particularly those caused by drug-resistant strains.


Assuntos
Membrana Celular , Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos , Bicamadas Lipídicas/metabolismo , Bicamadas Lipídicas/química , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Membrana Externa Bacteriana/metabolismo , Membrana Externa Bacteriana/efeitos dos fármacos
4.
Sci Rep ; 13(1): 18570, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903839

RESUMO

Biological membranes are renowned for their intricate complexity, with the formation of membrane domains being pivotal to the successful execution of numerous cellular processes. However, due to their nanoscale characteristics, these domains are often understudied, as the experimental techniques required for quantitative investigation present significant challenges. In this study we employ spot-variation z-scan fluorescence correlation spectroscopy (svzFCS) tailored for artificial lipid vesicles of varying composition and combine this approach with high-resolution imaging. This method has been harnessed to examine the lipid-segregation behavior of distinct types of ceramide-1-phosphate (C1P), a crucial class of signaling molecules, within these membranes. Moreover, we provide a quantitative portrayal of the lipid membranes studied and the domains induced by C1P at both nano and microscales. Given the lack of definitive conclusions from the experimental data obtained, it was supplemented with comprehensive in silico studies-including the analysis of diffusion coefficient via molecular dynamics and domain populations via Monte Carlo simulations. This approach enhanced our insight into the dynamic behavior of these molecules within model lipid membranes, confirming that nano- and microdomains can co-exist in lipid vesicles.


Assuntos
Ceramidas , Bicamadas Lipídicas , Bicamadas Lipídicas/química , Membrana Celular , Ceramidas/análise , Fosfatos/análise , Microdomínios da Membrana/química
5.
Nanomedicine ; 43: 102552, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35346834

RESUMO

Vitamin D3 deficiency has serious health consequences, as demonstrated by its effect on severity and recovery after COVID-19 infection. Because of high hydrophobicity, its absorption and subsequent redistribution throughout the body are inherently dependent on the accompanying lipids and/or proteins. The effective oral vitamin D3 formulation should ensure penetration of the mucus layer followed by internalization by competent cells. Isothermal titration calorimetry and computer simulations show that vitamin D3 molecules cannot leave the hydrophobic environment, indicating that their absorption is predominantly driven by the digestion of the delivery vehicle. In the clinical experiment, liposomal vitamin D3 was compared to the oily formulation. The results obtained show that liposomal vitamin D3 causes a rapid increase in the plasma concentration of calcidiol. No such effect was observed when the oily formulation was used. The effect was especially pronounced for people with severe vitamin D3 deficiency.


Assuntos
COVID-19 , Colecalciferol , Disponibilidade Biológica , Humanos , Lipossomos
6.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34768953

RESUMO

Phosphatidic acid (PA) is one of the simplest membrane phospholipids, yet it plays a crucial role in various biologically relevant processes that take place in cells. Since PA generation may be triggered by a variety of factors, very often of antagonistic character, the specific nature of physiological responses driven by PA is not clear. In order to shed more light on these issues, we carried out a systematic characterization of membranes containing one of the three biologically significant PA molecular species. The effect of these molecules on the properties of membranes composed of phosphatidylcholine and/or cholesterol was assessed in a multidisciplinary approach, including molecular dynamic simulations, flicker noise spectroscopy, and Langmuir monolayer isotherms. The first enables the determination of various macroscopic and microscopic parameters such as lateral diffusion, membrane thickness, and defect analysis. The obtained data revealed a strong interaction between unsaturated PA species and phosphatidylcholine. On the other hand, the behavior of saturated PA was greatly influenced by cholesterol. Additionally, a strong effect on mechanical properties was observed in the case of three-component systems, which could not be explained by the simple extrapolation of parameters of the corresponding two-component systems. Our data show that various PA species are not equivalent in terms of their influence on lipid mono- and bilayers and that membrane composition/properties, particularly those related to the presence of cholesterol, may strongly modulate PA behavior.


Assuntos
Bicamadas Lipídicas/química , Ácidos Fosfatídicos/química , Fenômenos Biomecânicos , Membrana Celular/química , Membrana Celular/metabolismo , Colesterol/química , Colesterol/metabolismo , Técnicas In Vitro , Bicamadas Lipídicas/metabolismo , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Simulação de Dinâmica Molecular , Ácidos Fosfatídicos/metabolismo , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Análise Espectral/métodos
7.
Int J Mol Sci ; 22(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34681757

RESUMO

The molecular details of the passive water flux across the hydrophobic membrane interior are still a matter of debate. One of the postulated mechanisms is the spontaneous, water-filled pore opening, which facilitates the hydrophilic connection between aqueous phases separated by the membrane. In the paper, we provide experimental evidence showing that the spontaneous lipid pore formation correlates with the membrane mechanics; hence, it depends on the composition of the lipid bilayer and the concentration of the osmotically active compound. Using liposomes as an experimental membrane model, osmotically induced water efflux was measured with the stopped-flow technique. Shapes of kinetic curves obtained at low osmotic pressure differences are interpreted in terms of two events: the lipid pore opening and water flow across the aqueous channel. The biological significance of the dependence of the lipid pore formation on the concentration difference of an osmotically active compound was illustrated by the demonstration that osmotically driven water flow can be accompanied by the dissipation of the pH gradient. The application of the Helfrich model to describe the probability of lipid pore opening was validated by demonstrating that the probability of pore opening correlates with the membrane bending rigidity. The correlation was determined by experimentally derived bending rigidity coefficients and probabilities of lipid pores opening.


Assuntos
Membrana Celular/química , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Água/metabolismo , Ovos , Concentração de Íons de Hidrogênio , Cinética , Luz , Lipossomos/química , Lisofosfatidilcolinas/química , Lipídeos de Membrana/química , Modelos Químicos , Pressão Osmótica , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Prótons , Água/química
8.
Int J Mol Sci ; 22(20)2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34681599

RESUMO

The spreading of antibiotic-resistant bacteria strains is one of the most serious problem in medicine to struggle nowadays. This triggered the development of alternative antimicrobial agents in recent years. One of such group is Gemini surfactants which are massively synthesised in various structural configurations to obtain the most effective antibacterial properties. Unfortunately, the comparison of antimicrobial effectiveness among different types of Gemini agents is unfeasible since various protocols for the determination of Minimum Inhibitory Concentration are used. In this work, we proposed alternative, computational, approach for such comparison. We designed a comprehensive database of 250 Gemini surfactants. Description of structure parameters, for instance spacer type and length, are included in the database. We parametrised modelled molecules to obtain force fields for the entire Gemini database. This was used to conduct in silico studies using the molecular dynamics to investigate the incorporation of these agents into model E. coli inner membrane system. We evaluated the effect of Gemini surfactants on structural, stress and mechanical parameters of the membrane after the agent incorporation. This enabled us to select four most likely membrane properties that could correspond to Gemini's antimicrobial effect. Based on our results we selected several types of Gemini spacers which could demonstrate a particularly strong effect on the bacterial membranes.


Assuntos
Simulação de Dinâmica Molecular , Tensoativos/química , Anti-Infecciosos/química , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Sítios de Ligação , Cátions , Parede Celular/química , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Bases de Dados de Compostos Químicos , Teoria da Densidade Funcional , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Tensoativos/metabolismo , Tensoativos/farmacologia
9.
Biophys J ; 120(16): 3392-3408, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34214528

RESUMO

The increasing problem of antibiotic resistance in bacteria requires the development of new antimicrobial candidates. There are several well-known substances with commercial use, but their molecular mode of action is not fully understood. In this work, we focus on two commonly used antimicrobial agents from the detergent family-octenidine dichloride (OCT) and chlorhexidine digluconate (CHX). Both of them are reported to be agents selectively attacking the cell membrane through interaction inducing membrane disruption by emulsification. They are believed to present electrostatic selectivity toward charged lipids. In this study, we tested this hypothesis and revised previously proposed molecular mechanisms of action. Employing a variety of techniques such as molecular dynamics, ζ potential with dynamic light scattering, vesicle fluctuation spectroscopy, carboxyfluorescein leakage measurement, and fluorescence trimethylammonium-diphenylhexatriene- and diphenylhexatriene-based studies for determination of OCT and CHX membrane location, we performed experimental studies using two model membrane systems-zwitterionic PC and negatively charged PG (18:1/18:1):PC (16:0/18:1) 3:7, respectively. These studies were extended by molecular dynamics simulations performed on a three-component bacterial membrane model system to further test interactions with another negatively charged lipid, cardiolipin. In summary, our study demonstrated that detergent selectivity is far more complicated than supposed simple electrostatic interactions. Although OCT does disrupt the membrane, our results suggest that its primary selectivity was more linked to mechanical properties of the membrane. On the other hand, CHX did not disrupt membranes as a primary activity, nor did it show any sign of electrostatic selectivity toward negatively charged membranes at any stage of interactions, which suggests membrane disruption by influencing more discrete membrane properties.


Assuntos
Clorexidina , Piridinas , Membrana Celular , Iminas , Bicamadas Lipídicas , Eletricidade Estática
10.
Sci Rep ; 11(1): 14751, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34285255

RESUMO

Flotillins are the major structural proteins in erythroid raft domains. We have shown previously that the dynamic nanoscale organization of raft domains in erythroid cells may depend on flotillin-MPP1 interactions. Here, by using molecular dynamic simulations and a surface plasmon resonance-based approach we determined that high-affinity complexes of MPP1 and flotillins are formed via a so far unidentified region within the D5 domain of MPP1. Significantly, this particular "flotillin binding motif" is of key physiological importance, as overexpression of peptides containing this motif inhibited endogenous MPP1-flotillin interaction in erythroid precursor cells, thereby causing lateral disorganization of raft domains. This was reflected by both reduction in the plasma membrane order and markedly decreased activation of signal transduction via the raft-dependent insulin receptor pathway. Our data highlight new molecular details concerning the mechanism whereby MPP1 functionally links flotillins to exert their physiological role in raft domain formation.


Assuntos
Proteínas Sanguíneas/metabolismo , Proteínas de Membrana/metabolismo , Sítios de Ligação , Proteínas Sanguíneas/química , Proteínas Sanguíneas/genética , Linhagem Celular , Membrana Celular/metabolismo , Humanos , Cinética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Simulação de Dinâmica Molecular , Mutagênese , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Ressonância de Plasmônio de Superfície
11.
Int J Mol Sci ; 22(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375009

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease that results in memory loss and the impairment of cognitive skills. Several mechanisms of AD's pathogenesis were proposed, such as the progressive accumulation of amyloid-ß (Aß) and τ pathology. Nevertheless, the exact neurodegenerative mechanism of the Aß remains complex and not fully understood. This paper proposes an alternative hypothesis of the mechanism based on maintaining the neuron membrane's mechanical balance. The incorporation of Aß decreases the lipid membrane's elastic properties, which eventually leads to the impairment of membrane clustering, disruption of mechanical wave propagation, and change in gamma oscillations. The first two disrupt the neuron's ability to function correctly while the last one decreases sensory encoding and perception enabling. To begin discussing this mechanical-balance hypothesis, we measured the effect of two selected peptides, Aß-40 and Aß-42, as well as their fluorescently labeled modification, on membrane mechanical properties. The decrease of bending rigidity, consistent for all investigated peptides, was observed using molecular dynamic studies and experimental flicker-noise techniques. Additionally, wave propagation was investigated with molecular dynamic studies in membranes with and without incorporated neurodegenerative peptides. A change in membrane behavior was observed in the membrane system with incorporated Aß.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Lipídeos de Membrana/metabolismo , Doenças Neurodegenerativas/metabolismo , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/química , Encéfalo/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Humanos , Bicamadas Lipídicas/metabolismo , Lipídeos de Membrana/química , Potenciais da Membrana , Microscopia Confocal , Simulação de Dinâmica Molecular , Doenças Neurodegenerativas/fisiopatologia , Neurônios/metabolismo , Fragmentos de Peptídeos/metabolismo , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo
12.
Langmuir ; 36(44): 13251-13262, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33125251

RESUMO

By conducting a systematic study of model lipid membranes using the atomic force microscopy (AFM) indentation, we demonstrate the importance of an experimental protocol on the determination of their mechanical parameters. We refine the experimental approach by analyzing the influence of the contact mechanics models used to process the data, substrate preparation, and indenter geometry. We show that both bending rigidity and area compressibility can be determined from a single AFM indentation measurement.

13.
Langmuir ; 36(14): 3826-3835, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32176506

RESUMO

Lipid bilayers are active participants in many crucial biological processes. They can be observed in different phases, liquid and solid, respectively. The liquid phase is predominant in biological systems. The solid phase, both crystalline and gel phases, is under investigation due to its resilience to mechanical stress and tight packing of lipids. The mechanical properties of lipids affect their dynamics, therefore influencing the transformation of cell plasma and the endomembrane. Mechanical properties of lipid bilayers are also an important parameter in the design and production of supramolecular lipid-based drug delivery systems. To this end, in this work, we focused on investigating the effect of solid phases of lipid bilayers on their structural parameters and mechanical properties using theoretical molecular dynamics studies on atomistic models of whole vesicles. Those include area per lipid, membrane thickness, density vesicle profiles, bending rigidity coefficient, and area compressibility. Additionally, the bending rigidity coefficient was measured using the flicker noise spectroscopy. The two approaches produced very similar and consistent results. We showed that, contrary to our expectations, bending rigidity coefficients of solid-ordered bilayers for vesicles decreased with an increase in lipid transition temperature. This tendency was reverse in planar systems. Additionally, we have observed an increase of membrane thickness and area compressibility and a decrease of area per lipid. We hope these results will provide valuable mechanical insight for the behavior in solid phases and differences between spherical and planar confirmations.

14.
J Membr Biol ; 251(4): 601-608, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29858612

RESUMO

Bending rigidity coefficient describes propensity of a lipid bilayer to deform. In order to measure the parameter experimentally using flickering noise spectroscopy, the microscopic imaging is required, which necessitates the application of giant unilamellar vesicles (GUV) lipid bilayer model. The major difficulty associated with the application of the model is the statistical character of GUV population with respect to their size and the homogeneity of lipid bilayer composition, if a mixture of lipids is used. In the paper, the bending rigidity coefficient was measured using the fluorescence-enhanced flicker-noise spectroscopy. In the paper, the bending rigidity coefficient was determined for large populations of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and 1,2-dioleoyl-sn-glycero-3-phosphocholine vesicles. The quantity of obtained experimental data allows to perform statistical analysis aiming at the identification of the distribution, which is the most appropriate for the calculation of the value of the membrane bending rigidity coefficient. It has been demonstrated that the bending rigidity coefficient is characterized by an asymmetrical distribution, which is well approximated with the gamma distribution. Since there are no biophysical reasons for that we propose to use the difference between normal and gamma fits as a measure of the homogeneity of vesicle population. In addition, the effect of a fluorescent label and types of instrumental setups on determined values has been tested. Obtained results show that the value of the bending rigidity coefficient does not depend on the type of a fluorescent label nor on the type of microscope used.


Assuntos
Fluorescência , Bicamadas Lipídicas/química , Glicerilfosforilcolina/química , Fosfatidilcolinas/química , Espectrometria de Fluorescência , Lipossomas Unilamelares/química
15.
Chem Phys Lipids ; 212: 88-95, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29408045

RESUMO

Giant unilamellar vesicles (GUVs) have become one of extensively studied biological bilayer models especially when investigating topological and mechanical properties of cell membranes. They are also used to visualize membrane-related phenomena. However, the method of preparation and the effects of parameters of preparation on the vesicular structure are extensively varied. Therefore, it is important to understand how the process of formation of GUVs influences the outcome population, as it can influence the outcome of the experiment that is planned. Therefore, in this study, we investigated the effects of protocol parameters of electroformation on properties of homogeneous population of POPC GUVs. The parameters investigated in this study are duration of electroformation, usage of electrodes and frequency of applied AC field and its voltage. The properties investigated, which can be used to describe GUV populations are average diameter of vesicle, the amount of lipid molecules in population, and structure of vesicles. According to our results, prolonged time (greater than 4 h) does not influence outcome; however, parameters of applied electrical field (voltage and frequency) did significantly influence the properties of obtained POPC GUV populations.


Assuntos
Eletricidade , Lipossomas Unilamelares/química , Eletrodos , Citometria de Fluxo , Microscopia de Fluorescência , Fosfatidilcolinas/química , Lipossomas Unilamelares/síntese química
16.
Biomed Pharmacother ; 97: 1195-1203, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29136959

RESUMO

Mechanical properties of biological structures play an important role in regulating cellular activities and are critical for understanding metabolic processes in cancerous cells and the effects of drugs. For some cancers, such as acute myeloid leukaemia, chemotherapy is one of preferential methods. However, due to the lack of selectivity to cancer cells, cytostatic agents cause toxicity to normal tissues. Here, we study the effect of doxorubicin (DOX) on the mechanical properties of DNA molecules, leukemic blast cells and erythrocytes, using optical tweezers. In addition, we controlled the subcellular distribution of the drug by confocal microscopy. Our results indicated that doxorubicin affects mechanical properties of cellular structures. In all cases the drug reduced mechanical strength of examined objects. For the leukemic cells the drug subcellular distribution was predominantly nuclear with some particulate cytoplasmic fluorescence. In erythrocytes, doxorubicin showed fluorescence mainly in cytoplasm and plasma membrane. The lowering of blast cells stiffness may be due to the interaction of doxorubicin with nuclear structures, especially with nucleic acids, as our studies with DNA confirmed. In addition, it is known that DOX inhibits the polymerization of actin and thus cytoskeletal modification may also be important in reducing of cell mechanical strength. In the case of erythrocytes - the non-nucleated cells, a significant effect on the decrease of cell stiffness, besides the cytoskeleton, may have the interaction of the drug with the cell membrane. Experiments with model phospholipid membranes confirmed that observed increase in cell elasticity originates, among other things, from the drug incorporation in the lipid membrane itself. The lowering of mechanical strength of leukemic cells may have an significant impact on the effectiveness of chemotherapy. However, the fact that doxorubicin interacts not only with proliferating cancer cells, but also with the health ones may explains the high toxicity of the drug at the therapeutic concentrations. Our observations also suggest that chemotherapy with doxorubicin may decrease the risk of vascular complications in acute leukemia, due to increasing the cell elasticity.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Antibióticos Antineoplásicos/toxicidade , Membrana Celular/efeitos dos fármacos , DNA/efeitos dos fármacos , DNA/metabolismo , Doxorrubicina/toxicidade , Elasticidade/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Humanos , Microscopia Confocal , Fosfolipídeos/metabolismo
17.
Biochim Biophys Acta Biomembr ; 1859(8): 1301-1309, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28461050

RESUMO

Organotin compounds, being biologically active, affect a variety of cellular functions due to their ability to accumulate in and penetrate biological membranes. These compounds influence the distribution of electrostatic charges, alter organization, disrupt molecular dynamics and change mechanical properties of biological membranes. It was found that the membrane/water partition coefficient equals 4, a value significantly higher than octanol/water partition coefficient. In addition, the effect of di- and tri-phenyltin chlorides on the mechanics of model lipid membranes was measured for the first time. It has been determined that phenyltins affect the global model lipid bilayer properties by reducing the membrane expansion modulus, when measured using micromanipulation technique, and elevating the bending rigidity coefficient of the lipid bilayer, as determined with the flickering noise spectroscopy. In addition, the elevated water permeability shows that phenyltins also cause the local defects formation in the lipid bilayer, i.e. lipid pores. These data shows that phenyltins may interfere indirectly with variety cellular processes by altering non-specifically the entire cellular membrane system. Accordingly, when phenyltins are added to macrophages in culture, they inflict massive alterations of cell morphology and interfere with membrane-associated processes, as visualized using fluorescence labelling of selected subcellular compartments.


Assuntos
Bicamadas Lipídicas/química , Macrófagos/efeitos dos fármacos , Compostos Orgânicos de Estanho/farmacologia , Fosfatidilcolinas/química , Lipossomas Unilamelares/química , Laranja de Acridina/metabolismo , Animais , Linhagem Celular , Cloretos/química , Relação Dose-Resposta a Droga , Peróxido de Hidrogênio/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Permeabilidade/efeitos dos fármacos , Água/metabolismo
18.
Biochim Biophys Acta ; 1858(2): 244-52, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26615919

RESUMO

Lipid bilayer is the main constitutive element of biological membrane, which confines intracellular space. The mechanical properties of biological membranes may be characterized by various parameters including membrane stiffness or membrane bending rigidity, which can be measured using flicker noise spectroscopy. The flicker noise spectroscopy exploits the spontaneous thermal undulations of the membrane. The method is based on the quantitative analysis of a series of microscopic images captured during thermal membrane fluctuations. Thus, measured bending rigidity coefficient depends on the image quality as well as the selection of computational tools for image processing and mathematical model used. In this work scanning and spinning disc confocal microscopies were used to visualize fluctuating membranes of giant unilamellar vesicles. The bending rigidity coefficient was calculated for different acquisition modes, using different fluorescent probes and different image processing methods. It was shown that both imaging approaches gave similar bending coefficient values regardless of acquisition time. Using the developed methodology the effect of fluorescent probe type and aqueous phase composition on the value of the membrane bending rigidity coefficient was measured. Specifically it was found that the bending rigidity coefficient of DOPC bilayer in water is smaller than that determined for POPC membrane. It has been found that the POPC and DOPC bending rigidities coefficient in sucrose solution was lower than that in water. Fluorescence imaging makes possible the quantitative analysis of membrane mechanical properties of inhomogeneous membrane.


Assuntos
Corantes Fluorescentes/química , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Espectrometria de Fluorescência
19.
J Fluoresc ; 26(2): 661-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26695945

RESUMO

Fluorescence Correlation Spectroscopy (FCS) is a technique, which allows determination of the diffusion coefficient and concentration of fluorescent objects suspended in the solution. The measured parameter is the fluctuation of the fluorescence signal emitted by diffusing molecules. When 100 nm DOPC vesicles labeled with various fluorescent dyes (Fluorescein-PE, NBD-PE, Atto488 DOPE or ßBodipy FL) were measured, different values of diffusion coefficients have been obtained. These diffusion coefficients were different from the expected values measured using the dynamic light scattering method (DLS). The FCS was initially developed for solutions containing small fluorescent molecules therefore the observed inconsistency may result from the nature of vesicle suspension itself. The duration of the fluorescence signal may depend on the following factors: the exposure time of the labeled object to the excitation beam, the photo-physical properties (e.g., stability) of a fluorophore, the theoretical model used for the calculations of the diffusion coefficient and optical properties of the vesicle suspension. The diffusion coefficients determined for differently labeled liposomes show that its dependence on vesicle size and quantity of fluorescent probed used for labeling was significant demonstrating that the fluorescence properties of the fluorophore itself (bleaching and/or blinking) were critical factors for a correct outcome of FCS experiment. The new, based on combined FCS and DLS measurements, method for the determination of the focal volume prove itself to be useful for the evaluation of a fluorescence dye with respect to its applicability for FCS experiment.


Assuntos
Fluorescência , Corantes Fluorescentes/química , Glicerilfosforilcolina/análogos & derivados , Lipossomos/química , Espectrometria de Fluorescência/métodos , Difusão , Glicerilfosforilcolina/química , Modelos Teóricos , Fosfatidilcolinas
20.
Phys Chem Chem Phys ; 17(26): 17454-60, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26079001

RESUMO

Catestatin, a cationic and hydrophobic 21-amino acid fragment of chromogranin A, is known to be a non-competitive nicotinic antagonist acting through nicotinic acetylcholine receptors (nAChRs) to inhibit catecholamine release. Since this receptor is the target of several neuronal and non-neuronal disorder prophylaxes and treatments, this study aims at the elucidation of the binding of human catestatin to the entire nAChR reconstructed in lipid bilayers by means of docking followed by full atomistic molecular dynamics simulations. The obtained results show that the minimum free energy for the binding of the peptide and the receptor attains minimal values for locations at the pore site and in the outer beta subunit. This result is consistent with previous studies showing that catestatin occludes the pore opening. A new finding is an additional even stronger binding seat at the beta subunit and that membrane presence could be an important factor. Specific amino acids involved in catestatin binding have been identified, indicating targets for point mutation studies. In addition to improving the understanding of the interaction between the peptide and muscle-type and even other nAChR subtypes, the results of this study provide directions for future peptidomimetic research.


Assuntos
Aminoácidos/análise , Aminoácidos/química , Cromogranina A/química , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos/química , Receptores Nicotínicos/química , Sítios de Ligação , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...