Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Foods ; 8(12)2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31847291

RESUMO

The aim of the study was to prove the usefulness of microencapsulation of Camelina sativa oil regarding its vulnerability to oxidation caused by oxygen, temperature, and other factors. Pectin, inulin, gum arabic, and ß-glucan, each of them mixed with maltodextrin, were used as wall materials and their appropriability to reduce oxidation of the core material was examined. Microcapsules were prepared by spray drying, which is the most commonly used and very effective method. The research confirmed results known from literature, that gum arabic and inulin are most proper wall materials, because they ensure small oxidation increase during storage (4.59 and 5.92 eq/kg after seven days respectively) and also provide high efficiency of process (83.93% and 91.74%, respectively). Pectin turned out to be the least appropriate polysaccharide because it is not able to assure sufficient protection for the core material, in this case Camelina sativa oil, due to low efficiency (61.36%) and high oxidation (16.11 eq/kg after seven days). ß-glucan occurred to be the coating material with relatively high encapsulation efficiency (79.26%) but high humidity (4.97%) which could negatively influence the storage of microcapsules. The use of polysaccharides in microencapsulation, except performing the role of wall material, has the advantage of increasing the amount of dietary fiber in human diet.

2.
Int J Biol Macromol ; 131: 1014-1020, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30910678

RESUMO

Due to large amounts of polyunsaturated fatty acids, carotenoids, polyphenols and tocopherols, sea buckthorn oil is enjoying growing popularity among consumers. To meet their expectations food producers are more and more willing to add it to products such as yogurts, juices and bread. Unfortunately due to high content of compounds sensitive to the process to which food products are subjected, the oil addition is limited. The solution may be adding oil in the form of capsules. Microencapsulation is a developing technology which depends on enclosing active material in special wall material. The process makes it possible to protect the core material against the influence of external factors such as: sun rays, oxygen or microorganisms. As the research has shown the process of oil microencapsulation does not contribute to the degradation of lipids. In turn product maintains durability and stability for longer. For example lipid oxidation after one week storage in microcapsules with 3% beta-glucan in the coating material was 5.50mEq/kg fat. The oxidation was about five times lower than during conventional storage oil in the fridge (31.78mEq/kg fat). In addition, the process makes it possible to increase the intake of soluble dietary fiber fraction thanks to the possibility of using beta-glucan as a wall material for the microcapsules prepared.


Assuntos
Materiais Revestidos Biocompatíveis/química , Hippophae/química , Hordeum/química , Óleos de Plantas/química , beta-Glucanas/química , Cápsulas/química , Fenômenos Químicos , Composição de Medicamentos , Estabilidade de Medicamentos , Ácidos Graxos , Oxirredução , Tamanho da Partícula , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...