Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Integr Plant Biol ; 65(8): 1859-1873, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36988217

RESUMO

The plant hormone abscisic acid (ABA) is crucial for plant seed germination and abiotic stress tolerance. However, the association between ABA sensitivity and plant abiotic stress tolerance remains largely unknown. In this study, 436 rice accessions were assessed for their sensitivity to ABA during seed germination. The considerable diversity in ABA sensitivity among rice germplasm accessions was primarily reflected by the differentiation between the Xian (indica) and Geng (japonica) subspecies and between the upland-Geng and lowland-Geng ecotypes. The upland-Geng accessions were most sensitive to ABA. Genome-wide association analyses identified four major quantitative trait loci containing 21 candidate genes associated with ABA sensitivity of which a basic helix-loop-helix transcription factor gene, OsbHLH38, was the most important for ABA sensitivity. Comprehensive functional analyses using knockout and overexpression transgenic lines revealed that OsbHLH38 expression was responsive to multiple abiotic stresses. Overexpression of OsbHLH38 increased seedling salt tolerance, while knockout of OsbHLH38 increased sensitivity to salt stress. A salt-responsive transcription factor, OsDREB2A, interacted with OsbHLH38 and was directly regulated by OsbHLH38. Moreover, OsbHLH38 affected rice abiotic stress tolerance by mediating the expression of a large set of transporter genes of phytohormones, transcription factor genes, and many downstream genes with diverse functions, including photosynthesis, redox homeostasis, and abiotic stress responsiveness. These results demonstrated that OsbHLH38 is a key regulator in plant abiotic stress tolerance.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Oryza , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Oryza/genética , Oryza/metabolismo , Tolerância ao Sal/genética , Estudo de Associação Genômica Ampla , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Estresse Fisiológico/genética , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Secas , Germinação/genética
2.
Antioxidants (Basel) ; 11(10)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36290768

RESUMO

Allantoin is crucial for plant growth and development as well as adaptations to abiotic stresses, but the underlying molecular mechanisms remain unclear. In this study, we comprehensively analyzed the physiological indices, transcriptomes, and metabolomes of rice seedlings following salt, allantoin, and salt + allantoin treatments. The results revealed that exogenous allantoin positively affects the salt tolerance by increasing the contents of endogenous allantoin with antioxidant activities, increasing the reactive oxygen species (ROS)-scavenging capacity, and maintaining sodium and potassium homeostasis. The transcriptome analysis detected the upregulated expression genes involved in ion transport and redox regulation as well as the downregulated expression of many salt-induced genes related to transcription and post-transcriptional regulation, carbohydrate metabolism, chromosome remodeling, and cell wall organization after the exogenous allantoin treatment of salt-stressed rice seedlings. Thus, allantoin may mitigate the adverse effects of salt stress on plant growth and development. Furthermore, a global metabolite analysis detected the accumulation of metabolites with antioxidant activities and intermediate products of the allantoin biosynthetic pathway in response to exogenous allantoin, implying allantoin enhances rice salt tolerance by inducing ROS scavenging cascades. These results have clarified the transcript-level and metabolic processes underlying the allantoin-mediated salt tolerance of rice.

3.
Int J Mol Sci ; 23(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35216209

RESUMO

N6-methyladenosine (m6A) methylation represents a new layer of the epitranscriptomic regulation of plant development and growth. However, the effects of m6A on rice responses to environmental stimuli remain unclear. In this study, we performed a methylated-RNA immunoprecipitation sequencing analysis and compared the changes in m6A methylation and gene expression in rice under salt stress conditions. Salt stress significantly increased the m6A methylation in the shoots (p value < 0.05). Additionally, 2537 and 2304 differential m6A sites within 2134 and 1997 genes were identified in the shoots and roots, respectively, under salt stress and control conditions. These differential m6A sites were largely regulated in a tissue-specific manner. A unique set of genes encoding transcription factors, antioxidants, and auxin-responsive proteins had increased or decreased m6A methylation levels only in the shoots or roots under salt stress, implying m6A may mediate salt tolerance by regulating transcription, ROS homeostasis, and auxin signaling in a tissue-specific manner. Integrating analyses of m6A modifications and gene expression changes revealed that m6A changes regulate the expression of genes controlling plant growth, stress responses, and ion transport under saline conditions. These findings may help clarify the regulatory effects of m6A modifications on rice salt tolerance.


Assuntos
Adenosina/análogos & derivados , Oryza/genética , Estresse Salino/genética , Tolerância ao Sal/genética , Adenosina/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Metilação , Raízes de Plantas/genética , Fatores de Transcrição/genética
4.
Int J Mol Sci ; 22(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34502018

RESUMO

Gibberellin 2-oxidase (GA2ox) plays an important role in the GA catabolic pathway and the molecular function of the OsGA2ox genes in plant abiotic stress tolerance remains largely unknown. In this study, we functionally characterized the rice gibberellin 2-oxidase 8 (OsGA2ox8) gene. The OsGA2ox8 protein was localized in the nucleus, cell membrane, and cytoplasm, and was induced in response to various abiotic stresses and phytohormones. The overexpression of OsGA2ox8 significantly enhanced the osmotic stress tolerance of transgenic rice plants by increasing the number of osmotic regulators and antioxidants. OsGA2ox8 was differentially expressed in the shoots and roots to cope with osmotic stress. The plants overexpressing OsGA2ox8 showed reduced lengths of shoots and roots at the seedling stage, but no difference in plant height at the heading stage was observed, which may be due to the interaction of OsGA2ox8 and OsGA20ox1, implying a complex feedback regulation between GA biosynthesis and metabolism in rice. Importantly, OsGA2ox8 was able to indirectly regulate several genes associated with the anthocyanin and flavonoid biosynthetic pathway and the jasmonic acid (JA) and abscisic acid (ABA) biosynthetic pathway, and overexpression of OsGA2ox8 activated JA signal transduction by inhibiting the expression of jasmonate ZIM domain-containing proteins. These results provide a basis for a future understanding of the networks and respective phenotypic effects associated with OsGA2ox8.


Assuntos
Regulação da Expressão Gênica de Plantas , Oxigenases de Função Mista/genética , Oryza/enzimologia , Proteínas de Plantas/genética , Transdução de Sinais , Estresse Fisiológico , Ácido Abscísico/metabolismo , Antocianinas/biossíntese , Vias Biossintéticas , Ciclopentanos/metabolismo , Flavonoides/biossíntese , Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/fisiologia , Especificidade de Órgãos , Oryza/genética , Oryza/metabolismo , Oryza/fisiologia , Pressão Osmótica , Oxilipinas/metabolismo , Raízes de Plantas , Plântula
5.
Sci Rep ; 11(1): 5166, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664392

RESUMO

Integration of transcriptomics and metabolomics data can provide detailed information for better understanding the molecular mechanisms underlying salt tolerance in rice. In the present study, we report a comprehensive analysis of the transcriptome and metabolome of rice overexpressing the OsDRAP1 gene, which encodes an ERF transcription factor and was previously identified to be conferring drought tolerance. Phenotypic analysis showed that OsDRAP1 overexpression (OE) improved salt tolerance by increasing the survival rate under salt stress. OsDRAP1 affected the physiological indices such as superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) to enhance redox homeostasis and membrane stability in response to salt stress. Higher basal expression of OsDRAP1 resulted in differential expression of genes that potentially function in intrinsic salt tolerance. A core set of genes with distinct functions in transcriptional regulation, organelle gene expression and ion transport were substantially up-regulated in the OE line in response to salt stress, implying their important role in OsDRAP1-mediated salt tolerance. Correspondingly, metabolome profiling detected a number of differentially metabolites in the OE line relative to the wild type under salt stress. These metabolites, including amino acids (proline, valine), organic acids (glyceric acid, phosphoenolpyruvic acid and ascorbic acid) and many secondary metabolites, accumulated to higher levels in the OE line, demonstrating their role in salt tolerance. Integration of transcriptome and metabolome analysis highlights the crucial role of amino acids and carbohydrate metabolism pathways in OsDRAP1-mediated salt tolerance.


Assuntos
Metaboloma/genética , Oryza/genética , Tolerância ao Sal/genética , Transcriptoma/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Genótipo , Metabolômica , Oryza/crescimento & desenvolvimento , Estresse Salino/genética
7.
BMC Cancer ; 20(1): 839, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32883232

RESUMO

BACKGROUND: Astrocytoma is a common tumor type in primary central nervous system and has a high death rate around the world. Aberrant expression of long non-coding RNAs (lncRNAs) has been introduced by emerging studies to result in the development of diverse cancers. METHODS: RT-qPCR examined the expression of SNHG17, miR-876-5p and ERLIN2, and western blot evaluated ERLIN2 protein level. RNA pull down and luciferase reporter assays illustrated the relationships between SNHG17 and its downstream molecules. RESULTS: SNHG17 was up-regulated in astrocytoma cells. Moreover, SNHG17 silence could repress the proliferation, migration and invasion of astrocytoma cells. Besides, miR-876-5p was selected out as a downstream molecule of SNHG17 in astrocytoma. ERLIN2 was determined to be targeted by miR-876-5p. ERLIN2 mRNA and protein levels were lessened by miR-876-5p overexpression and SNHG17 silence. Additionally, miR-876-5p overexpression decelerated the biological processes of astrocytoma cells, so did ERLIN2 knockdown. More importantly, the impacts of SNHG17 down-regulation on the malignant behaviors of astrocytoma cells were counteracted by overexpressed ERLIN2 or inhibited miR-876-5p. CONCLUSIONS: SNHG17 could induce the progression of astrocytoma by sponging miR-876-5p to elevate the expression of ERLIN2. This study indicated that SNHG17 has a high potential to be a therapeutic target for astrocytoma.


Assuntos
Astrocitoma/genética , Neoplasias Encefálicas/genética , Progressão da Doença , Proteínas de Membrana/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Apoptose/genética , Astrocitoma/patologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Proteínas de Membrana/metabolismo , Invasividade Neoplásica/genética , Transfecção , Regulação para Cima/genética
8.
Rice (N Y) ; 13(1): 50, 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32705427

RESUMO

BACKGROUND: High soil salinity can cause significant losses in rice productivity worldwide, mainly because salt inhibits plant growth and reduces grain yield. To cope with environmental changes, plants have evolved several adaptive mechanisms that involve the regulation of many stress-responsive genes. RESULTS: In this study, we identified OsSTAP1, which encodes an AP2/ERF-type transcription factor, was rapidly induced by ABA, ACC, salt, cold, and PEG treatments. OsSTAP1 is localized to the nucleus and acts as a transcriptional activator in plant cells. Compared with wild type, transgenic lines overexpressing OsSTAP1 exhibited increased tolerance to salt stress with higher SOD, POD, and CAT activities, and lower Na+/K+ ratios in the shoots. In addition, many other stress-responsive genes, including other ERF- and peroxidase-encoding genes, were upregulated in the OsSTAP1-overexpression lines. CONCLUSION: This study suggests that OsSTAP1 functions as an AP2/ERF transcriptional activator, and plays a positive role in salt tolerance by decreasing the Na+/K+ ratio and maintaining cellular redox homeostasis.

9.
Plant Mol Biol ; 102(1-2): 89-107, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31768809

RESUMO

KEY MESSAGE: OsPUB67, a U-box E3 ubiquitin ligase, may interact with two drought tolerance negative regulators (OsRZFP34 and OsDIS1) and improve drought tolerance by enhancing the reactive oxygen scavenging ability and stomatal closure. E3 ubiquitin ligases are major components of the ubiquitination cascade and contribute to the biotic and abiotic stress response in plants. In the present study, we show that a rice drought responsive gene, OsPUB67, encoding the U-box E3 ubiquitin ligase was significantly induced by drought, salt, cold, JA, and ABA, and was expressed in nuclei, cytoplasm, and membrane systems. This distribution of expression suggests a significant role for OsPUB67 in a wide range of biological processes and abiotic stress response. Over-expression of OsPUB67 improved drought stress tolerance by enhancing the reactive oxygen scavenging ability and stomatal closure. Bimolecular fluorescence complementation assays revealed that a few E2s interacted with OsPUB67 with unique functional implications in different cell components. Further evidence showed that several E3 ubiquitin ligases interacted with OsPUB67, especially OsRZFP34 and OsDIS1, which are negative regulators of drought tolerance. This interaction on the stomata implied OsPUB67 might function as a heterodimeric ubiquitination complex in response to drought stress. Comprehensive transcriptome analysis revealed OsPUB67 participated in regulating genes involved in the abiotic stress response and transcriptional regulation in an ABA-dependent manner. Our findings revealed OsPUB67 mediated a multilayered complex drought stress tolerance mechanism.


Assuntos
Secas , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Estresse Fisiológico/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Aclimatação/genética , Aclimatação/fisiologia , Sequência de Aminoácidos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Oryza/genética , Fenótipo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Estômatos de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Plântula , Alinhamento de Sequência , Análise de Sequência de Proteína , Cloreto de Sódio/farmacologia , Estresse Fisiológico/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/isolamento & purificação , Ubiquitinação
10.
Artigo em Inglês | MEDLINE | ID: mdl-28025347

RESUMO

Epigenetic drugs are chemical compounds that target disordered post-translational modification of histone proteins and DNA through enzymes, and the recognition of these changes by adaptor proteins. Epigenetic drug-related experimental data such as gene expression probed by high-throughput sequencing, co-crystal structure probed by X-RAY diffraction and binding constants probed by bio-assay have become widely available. The mining and integration of multiple kinds of data can be beneficial to drug discovery and drug repurposing. HEMD and other epigenetic databases store comprehensively epigenetic data where users can acquire segmental information of epigenetic drugs. However, some data types such as high-throughput datasets are not provide by these databases and they do not support flexible queries for epigenetic drug-related experimental data. Therefore, in reference to HEMD and other epigenetic databases, we developed a relatively comprehensive database for human epigenetic drugs. The human epigenetic drug database (HEDD) focuses on the storage and integration of epigenetic drug datasets obtained from laboratory experiments and manually curated information. The latest release of HEDD incorporates five kinds of datasets: (i) drug, (ii) target, (iii) disease, (vi) high-throughput and (v) complex. In order to facilitate data extraction, flexible search options were built in HEDD, which allowed an unlimited condition query for specific kinds of datasets using drug names, diseases and experiment types.Database URL: http://hedds.org/.


Assuntos
Bases de Dados Genéticas , Epigênese Genética , Farmacogenética/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...