Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 473: 134731, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38797078

RESUMO

Organophosphate flame retardants (OPFRs) are widely used in consumer products, leading to their unavoidable release into the environment, especially accumulation in anaerobic environments and posing potential risks. This study focused on Tris(2-chloroethyl) phosphate (TCEP), a representative OPFR, to investigate its effects on carbon transformation and methane production in anaerobic digestion. Increasing TCEP concentrations from control to 16 mg/L resulted in decreased cumulative methane yield (from 235.4 to 196.3 mL/g COD) and maximum daily methane yield (from 40.8 to 16.17 mL/(g COD·d)), along with an extended optimal anaerobic digestion time (from 15 to 20 days). Mechanistic analysis revealed TCEP binding to tyrosine-like proteins in extracellular polymeric substances, causing cell membrane integrity impairment. The TCEP-caused alteration of the physiological status of cells was demonstrated to be a significant contribution to the inhibited bioprocesses including acidogenesis, acetogenesis, and methanogenesis. Illumina Miseq sequencing showed TCEP decreasing the relative abundance of acidogens (58.8 % to 46.0 %) and acetogens (7.1 % to 5.0 %), partly shifting the methanogenesis pathway from acetoclastic to hydrogenotrophic methanogenesis. These findings enhance understanding of TCEP's impact on anaerobic digestion, emphasizing the environmental risk associated with its continued accumulation.


Assuntos
Retardadores de Chama , Metano , Organofosfatos , Metano/metabolismo , Anaerobiose , Organofosfatos/metabolismo , Organofosfatos/toxicidade , Retardadores de Chama/metabolismo , Retardadores de Chama/toxicidade , Reatores Biológicos , Microbiota/efeitos dos fármacos , Bactérias/metabolismo , Bactérias/efeitos dos fármacos
2.
Environ Sci Technol ; 57(17): 6761-6775, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37070716

RESUMO

The recovery of biomass energy from food waste through anaerobic digestion as an alternative to fossil energy is of great significance for the development of environmental sustainability and the circular economy. However, a substantial number of food additives (e.g., salt, allicin, capsaicin, allyl isothiocyanate, monosodium glutamate, and nonnutritive sweeteners) are present in food waste, and their interactions with anaerobic digestion might affect energy recovery, which is typically overlooked. This work describes the current understanding of the occurrence and fate of food additives in anaerobic digestion of food waste. The biotransformation pathways of food additives during anaerobic digestion are well discussed. In addition, important discoveries in the effects and underlying mechanisms of food additives on anaerobic digestion are reviewed. The results showed that most of the food additives had negative effects on anaerobic digestion by deactivating functional enzymes, thus inhibiting methane production. By reviewing the response of microbial communities to food additives, we can further improve our understanding of the impact of food additives on anaerobic digestion. Intriguingly, the possibility that food additives may promote the spread of antibiotic resistance genes, and thus threaten ecology and public health, is highlighted. Furthermore, strategies for mitigating the effects of food additives on anaerobic digestion are outlined in terms of optimal operation conditions, effectiveness, and reaction mechanisms, among which chemical methods have been widely used and are effective in promoting the degradation of food additives and increasing methane production. This review aims to advance our understanding of the fate and impact of food additives in anaerobic digestion and to spark novel research ideas for optimizing anaerobic digestion of organic solid waste.


Assuntos
Alimentos , Eliminação de Resíduos , Esgotos , Aditivos Alimentares , Anaerobiose , Reatores Biológicos , Metano
3.
Environ Sci Technol ; 57(8): 3145-3155, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36795785

RESUMO

1-Butyl-3-methylimidazolium chloride (BmimCl), an imidazolium-based ionic liquid, is considered the representative emerging persistent aquatic pollutant, and its environmental toxicity has attracted a growing concern. However, most of the investigations focused on monocultures or a single organism, with little information available on the complex syntrophic consortium that dominates the complex and successional biochemical processes, such as anaerobic digestion. In this study, the effect of BmimCl at environmentally relevant levels on glucose anaerobic digestion was therefore investigated in several laboratory-scale mesophilic anaerobic digesters to provide such support. Experimental results showed that BmimCl at 1-20 mg/L inhibited the methane production rate by 3.50-31.03%, and 20 mg/L BmimCl inhibited butyrate, hydrogen, and acetate biotransformation by 14.29%, 36.36%, and 11.57%, respectively. Toxicological mechanism studies revealed that extracellular polymeric substances (EPSs) adsorbed and accumulated BmimCl through carboxyl, amino, and hydroxyl groups, which destroyed the EPSs' conformational structure, thereby leading to the inactivation of microbial cells. MiSeq sequencing data indicated that the abundance of Clostridium_sensu_stricto_1, Bacteroides, and Methanothrix decreased by 6.01%, 7.02%, and 18.45%, respectively, in response to 20 mg/L BmimCl. Molecular ecological network analysis showed that compared with the control, the lower network complexity, fewer keystone taxa, and fewer associations among microbial taxa were found in the BmimCl-present digester, indicating the reduced stability of the microbial community.


Assuntos
Microbiota , Anaerobiose , Sobrevivência Celular , Imidazóis/química , Reatores Biológicos , Metano , Esgotos/química
4.
Sci Total Environ ; 869: 161780, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36706993

RESUMO

Microplastics (MPs) and Cd have been proven to inhibit methane production from anaerobic digestion of sewage sludge. However, the published studies mainly focused on their single inhibition. This cannot reflect the real-world situations where MPs and Cd co-exist. This study therefore aims to reveal the combined effect of MPs and Cd on anaerobic digestion of sewage sludge. Experimental results showed that PVC-MPs at environmentally relevant levels (e.g., 1, 10 particles/g total solids (TS)) did not affect methane yield but decrease the toxicity of Cd. When PVC-MPs were 30 particles/g TS, the cumulative methane production recovered from 58.8 % (in the presence of 5 mg Cd/g TS) to 89.7 % of the control. Organic fluxes were significantly increased compared with the control, particularly affecting the content of dissolved substances and short-chain fatty acids during anaerobic digestion. Mechanistic exploration showed that the adsorption of Cd by PVC-MPs was higher than that of sludge-substrate, which reduced the bioavailability of Cd by anaerobes, as evidenced by the increased anaerobes driven carbon flux from solid-phase to bio-methane during anaerobic digestion. Overall, these findings identified important factors in determining the toxicity of pollutants on anaerobic digestion process, providing precise data for toxicity evaluation of MPs and metals in anaerobic environment.


Assuntos
Microplásticos , Esgotos , Esgotos/química , Cádmio/toxicidade , Plásticos , Anaerobiose , Reatores Biológicos , Metano
5.
Environ Sci Technol ; 56(16): 11277-11287, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35905436

RESUMO

Tetrabromobisphenol A (TBBPA) has extensive applications in various fields; its release into ecosystems and the potential toxic effects on organisms are becoming major concerns. Here, we investigated the effects of TBBPA on anaerobic digestion, whose process is closely related to the carbon cycles under anaerobic conditions. The results revealed that TBBPA exhibited dose-dependent hormesis-like effects on methane production from glucose, i.e., the presence of 0.1 mg/L TBBPA increased the methane production rate by 8.79%, but 1.0-4.0 mg/L TBBPA caused 3.45-28.98% of decrement. We found that TBBPA was bound by the tyrosine-like proteins of the extracellular polymeric substances of anaerobes and induced the increase of reactive oxygen species, whose slight accumulation stimulated the metabolism activities but high accumulation increased the apoptosis of anaerobes. Owing to the differences between individual anaerobes in tolerance, TBBPA at 0.1 mg/L stimulated the acidogenesis and hydrogenotrophic methanogenesis, whereas higher levels (i.e., 1.0-4.0 mg/L) severely restrained all of the processes of acidogenesis, acetogenesis, and methanogenesis. Along with the accumulation of bisphenol A (BPA) produced from TBBPA by Longilinea sp. and Pseudomonas sp., the methanogenic pathway was partly shifted from acetate-dependent to hydrogen-dependent direction, and the activities of carbon monoxide dehydrogenase and acetyl-CoA decarbonylase/synthase were inhibited, while acetate kinase and F420 were hormetically affected. These findings elucidated the mechanism of anaerobic syntrophic consortium responses to TBBPA, supplementing the potential environmental risks of brominated flame retardants.


Assuntos
Retardadores de Chama , Microbiota , Bifenil Polibromatos , Anaerobiose , Bactérias Anaeróbias/metabolismo , Retardadores de Chama/metabolismo , Retardadores de Chama/toxicidade , Hormese , Metano , Bifenil Polibromatos/metabolismo , Bifenil Polibromatos/toxicidade
6.
Water Res ; 221: 118742, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35752095

RESUMO

Rhamnolipid (RL), one representative biosurfactant, is widely regarded as an economically feasible and environmentally beneficial additive to improve fermentation efficiency and resource recovery from waste activated sludge (WAS). However, its potentially detrimental impact on WAS fermentation such as H2S generation was overlooked previously. This study therefore aims to fill the gap through exploring whether and how the presence of RL affects H2S generation from WAS anaerobic fermentation. Experimental results showed that when RL increased from 0 to 40 mg/g total suspended solids (TSS), the cumulative H2S yield enhanced from 323.6 ×  10-4 to 620.3 ×  10-4 mg/g volatile suspended solids (VSS). Mechanism analysis showed that RL reduced WAS surface tension, which benefited transformations of organic sulfurs (e.g., aliphatic-S and sulfoxide) and inorganic sulfate from solid to liquid phase. The presence of RL not only reduced the ratio of α-helix/(ß-sheet + random coil) and damaged the hydrogen bonding networks of organic sulfurs but also promoted substrate surface charges and cell membrane permeability. These facilitated the contact between hydrolase and organic sulfurs, thereby increasing sulfide production from organic sulfurs hydrolysis. Further investigations showed that RL promoted the expression of key genes (e.g., aprA/B and dsrA/B) involved in the dissimilatory sulfate reduction, which accelerated the reaction of adenosine 5'-phosphosulfate (APS)→ sulfite→ sulfide. Meanwhile, RL inhibited the corresponding key genes such as CysH, and Sir, responsible for assimilatory sulfate reduction (APS→3'-phosphoadenosine-5'phosphosulfate→organosulfur), which reduced substrate competition in favor of H2S production from dissimilatory sulfate reduction. Besides, RL decreased the fermentation pH, which benefited the transformation of HS- to H2S.


Assuntos
Esgotos , Sulfatos , Anaerobiose , Ácidos Graxos Voláteis/metabolismo , Fermentação , Glicolipídeos , Concentração de Íons de Hidrogênio , Sulfetos
7.
Sci Total Environ ; 844: 156991, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35772535

RESUMO

Peracetic acid (PAA), a widely used organic peroxide with strong disinfection and oxidizing effect, has recently attracted research interest in waste activated sludge (WAS) treatment to achieve sludge reduction and resource utilization. However, its impact on hydrogen accumulation from WAS dark fermentation has not been documented. This study therefore is intended to fill in this knowledge gap and clarify the underlying mechanism of PAA-promoted hydrogen generation. Batch experiments revealed that when raised PAA dosage from 0 to 8 mg/g TSS (total suspended solids), cumulative hydrogen production within 168 h fermentation increased from 1.3 to 14.2 mL/g VSS (volatile suspended solids), however, further increase PAA dosage to 10 mg/g TSS resulted in a slight decrease in hydrogen yield. Mechanism studies revealed that PAA was beneficial to sludge disintegration (10 mg/g TSS PAA increased SCOD (soluble chemical oxygen demand) by 254 %). Although PAA inhibited the activity of all microorganism involved in dark fermentation, the inhibitory effect on hydrogen consumers were much more serious than that on hydrogen producers (-45.8 % versus -5.1 % and - 7.3 %). The fermentation was found to shift from propionate type to acetate and butyrate type, favoring hydrogen production. Moreover, the methane production process was effectively inhibited by PAA, which meant less hydrogen consumption. Microbial community analysis results unveiled that PAA increased the abundances of hydrolytic bacteria (e.g., norank_f__Saprospiraceae) and hydrogen producers (e.g., Clostridium_sensu_stricto_10). These findings obtained in this work provide new insights into oxidants-involved sludge treatment process and might have important implication for WAS treatment and bioenergy production in the future.


Assuntos
Ácido Peracético , Esgotos , Anaerobiose , Ácidos Graxos Voláteis , Fermentação , Hidrogênio , Concentração de Íons de Hidrogênio , Esgotos/microbiologia
8.
Bioresour Technol ; 354: 127179, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35436541

RESUMO

Volatile fatty acids (VFAs) production from anaerobic fermentation of microalgae is generally constrained by low organics solubilization and poor substrate-availability. In this study, sulfite-based pretreatment was developed to overcome such situation. Experimental results showed that the maximum concentration of VFAs (467.5 mg COD/g VSS) and corresponding acetate proportion (54.5%) was obtained at 200 mg sulfite-S/L with fermentation time of day 8, which was respectively 2.1- and 1.9-fold of control. It was found that after sulfite pretreatment, more and relatively easy biodegradable organics were released into liquid phase, providing available substrate for acid-producing bacteria. The rigid cell wall of microalgae was destroyed, evidenced by the decreased particle size and increased surface area, which made the microalgae more accessible for subsequent hydrolysis and acidification. Meanwhile, the sulfite-induced sulfate-reducing bacteria facilitated the acetate generation pathway. The accelerated activities of ß-glucanase, ß-glucosidase, and acetate kinase involved in anaerobic fermentation further validated the above results.


Assuntos
Microalgas , Anaerobiose , Ácidos Graxos Voláteis/metabolismo , Fermentação , Concentração de Íons de Hidrogênio , Microalgas/metabolismo , Esgotos , Sulfitos/farmacologia
9.
Bioresour Technol ; 347: 126366, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34838636

RESUMO

Producing methane from anaerobic co-digestion of kitchen waste and waste activated sludge has been widely implemented in real-world situations. However, the fate and impact of allyl isothiocyanate (AITC), a main active component in cruciferous vegetables, in the anaerobic co-digestion has never been documented. This study therefore aims to provide such supports. Experimental results exhibited that AITC was degraded completely by microorganisms and served as a substrate to produce methane. As AITC increased from 0 to 60 mg/L, the maximum methane production decreased from 285.1 to 35.8 mL/g VS, and the optimum digestion time was also prolonged. The mechanism study demonstrated that AITC induced cell apoptosis by modifying the physicochemical properties of cell membrane, which resulted in inhibitions to the procedure of anaerobic co-digestion. The high-throughput sequencing showed that AITC enriched the microorganism for degradation of complex organic compounds such as Bacillus, but lessened anaerobes involved in hydrolysis, acidogenesis, and methanogenesis.


Assuntos
Reatores Biológicos , Esgotos , Anaerobiose , Digestão , Isotiocianatos , Metano , Eliminação de Resíduos Líquidos
10.
Environ Sci Technol ; 55(23): 15843-15852, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34788010

RESUMO

The expanding use of chitosan in sewage and sludge treatment processes raises concerns about its potential environmental impacts. However, investigations of the impacts of chitosan on sewage sludge anaerobic digestion where chitosan is present at substantial levels are sparse. This study therefore aims to fill this knowledge gap through both long-term and batch tests. The results showed that 4 g/kg total suspended solid (TSS) chitosan had no acute effects on methane production, but chitosan at 8-32 g/kg TSS inhibited methane production by 7.2-30.3%. Mass balance and metabolism of organic analyses indicated that chitosan restrained the transfer of organic substrates from solid phase to liquid phase, macromolecules to micromolecules, and finally to methane. Further exploration revealed that chitosan suppressed the secretion of extracellular polymeric substances of anaerobes by occupying the connection sites of indigenous carbohydrates and increased the mass transfer resistance between anaerobes and substrates, which thereby lowered the metabolic activities of anaerobes. Although chitosan could be partly degraded by anaerobes, it is much more persistent to be degraded compared with indigenous organics in sludge. Microbial community and key enzyme encoding gene analyses further revealed that the inhibition of chitosan to CO2-dependent methanogenesis was much severer than that to acetate-dependent methanogenesis.


Assuntos
Quitosana , Eliminação de Resíduos Líquidos , Anaerobiose , Reatores Biológicos , Metano , Esgotos
11.
Water Res ; 199: 117198, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33984590

RESUMO

This work proved an efficient method to significantly increase methane production from anaerobic digestion of WAS. This method is to reflux proper of digestion liquid into waste activated sludge pretreatment unit (pH 9.5 for 24 h). The yield of maximum methane improved between 174.2 ± 7.3 and 282.5 ± 14.1 mL/g VSS with the reflux ratio of digestion liquid increasing from 0% to 20%. It was observed that the biodegradable organics in the digestion liquid did not affect the biological processes related to anaerobic digestion but increased methane production through reutilization. The ammonium in the digestion liquid was the main contributor to the increase in methane production via promoting sludge solubilization, but refractory organics were the major inhibitors to anaerobic digestion. It should be emphasized that the metal ions present in the digestion liquid were beneficial rather than harmful to the biological processes in the anaerobic digestion, which may be connected with the fact that certain metal ions were involved in the expression and activation of key enzymes. In addition, it was found that anaerobes in digestion liquid were another potential contributor to the enhanced anaerobic digestion.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Anaerobiose , Reatores Biológicos , Digestão , Metano
12.
Water Res ; 189: 116645, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33227607

RESUMO

Poly ferric sulfate (PFS), one of the typical inorganic flocculants widely used in wastewater management and waste activated sludge (WAS) dewatering, could be accumulated in WAS and inevitably entered in anaerobic digestion system at high levels. However, knowledge about its impact on methane production is virtually absent. This study therefore aims to fill this gap and provide insights into the mechanisms involved through both batch and long-term tests using either real WAS or synthetic wastewaters as the digestion substrates. Experimental results showed that the maximum methane potential and production rate of WAS was respectively retarded by 39.0% and 66.4%, whereas the lag phase was extended by 237.0% at PFS of 40 g per kg of total solids. Mechanism explorations exhibited that PFS induced the physical enmeshment and disrupted the enzyme activity involved in anaerobic digestion, resulting in an inhibitory state of the bioprocess of hydrolysis, acidogenesis, and methanogenesis. Furthermore, PFS's inhibition to hydrogenotrophic methanogenesis was much severer than that to acetotrophic methanogenesis, which could be supported by the elevated abundances of Methanosaeta sp and the dropped abundances of Methanobacterium sp in PFS-present digester, and probably due to the severe mass transfer resistance of hydrogen between the syntrophic bacteria and methanogens, as well as the higher hydrogen appetency of PFS-induced sulfate reducing bacteria. Among the derivatives of PFS, "multinucleate and multichain-hydroxyl polymers" and sulfate were unveiled to be the major contributors to the decreased methane potential, while the "multinucleate and multichain-hydroxyl polymers" were identified to be the chief buster to the slowed methane-producing rate and the extended lag time.


Assuntos
Reatores Biológicos , Esgotos , Anaerobiose , Compostos Férricos , Metano
13.
Water Res ; 188: 116539, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33125995

RESUMO

Anaerobic co-digestion is an attractive option to treat food waste and waste activated sludge, which is increasingly applied in real-world situations. As an active component in Capsicum species being substantially present in food waste in many areas, capsaicin has been recently demonstrated to inhibit the anaerobic co-digestion. However, the interaction between capsaicin and anaerobic co-digestion are still poorly understood. This work therefore aims to deeply understand the fate and impact of capsaicin in the anaerobic co-digestion. Experiment results showed that capsaicin was completely degraded in anaerobic co-digestion by hydroxylation, O-demethylation, dehydrogenation and doubly oxidization, respectively. Although methane was proven to be produced from capsaicin degradation, the increase in capsaicin concentration resulted in decrease in methane yield from the anaerobic co-digestion. With an increase of capsaicin from 2 ± 0.7 to 68 ± 4 mg/g volatile solids (VS), the maximal methane yield decreased from 274.6 ± 9.7 to 188.9 ± 8.4 mL/g VS. The mechanic investigations demonstrated that the presence of capsaicin induced apoptosis, probably by either altering key kinases or decreasing the intracellular NAD+/NADH ratio, which led to significant inhibitions to hydrolysis, acidogenesis, and methanogenesis, especially acetotrophic methanogenesis. Illumina Miseq sequencing analysis exhibited that capsaicin promoted the populations of complex organic degradation microbes such as Escherichia-Shigella and Fonticella but decreased the numbers of anaerobes relevant to hydrolysis, acidogenesis, and methanogenesis such as Bacteroide and Methanobacterium.


Assuntos
Eliminação de Resíduos , Esgotos , Anaerobiose , Reatores Biológicos , Capsaicina , Digestão , Alimentos , Metano
14.
Bioresour Technol ; 316: 123947, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32769002

RESUMO

Deterioration of anaerobic fermentation can occur with the presence of grease in food waste, but little information on eliminating this deterioration is currently available. In this study, it was found that the presence of 10 g/L grease decreased SCFAs production from 16.97 to 13.32 g COD/L and prolonged the optimal fermentation time to 7 days, but could be respectively recovered to 39.10 g COD/L and 4 days with 0.02 mg/g VS (volatile solids) calcium peroxide addition. Mechanism investigations indicated that calcium peroxide facilitated biodegradable organics release and improved grease degradation, thereby providing enough nutrients and better growth environments to microbes for SCFAs-producing, which could be further supported by the elevated enzymes activities responding to hydrolysis and acidification process. Further investigations revealed that among the main derivates of calcium peroxide, OH- and Ca2+ played vital role in SCFAs production promotion, O2- and OH radicals were the main contributors to grease degradation.


Assuntos
Alimentos , Eliminação de Resíduos , Anaerobiose , Ácidos Graxos Voláteis , Fermentação , Concentração de Íons de Hidrogênio , Hidrólise , Peróxidos , Esgotos
15.
J Hazard Mater ; 384: 121363, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31610350

RESUMO

Thiosulfinates, a natural antibiotic, existed in all parts of Allium, therefore might be accumulated in large amounts in food waste (FW). FW was often added into waste activated sludge (WAS) anaerobic digestion process as a kind of supplement for nutrition balance. However, the impact of thiosulfinates on methane production and the possible approach to mitigate its inhibition on the co-digestion process could be available in few literatures. This work was carried out in a series of batch experiment at pH 7.0 ±â€¯0.2 and 35 ±â€¯1.0 ℃ to promote the further understanding of this process. The experimental results showed that the methane accumulation decreased from 270.6 ±â€¯13.4 to 16.7 ±â€¯7.0 mL/g VSS (volatile suspended solids) when the initial concentration of thiosulfinates increased from 0 to 2.5 µg/g VSS. The activities of functional enzymes (F420 and CoM) were inhibited by 99.06% and 99.82% compared with control group when reactor contained 2.5 µg/g VSS thiosulfinates. Furthermore, different temperature, pH, and combination pretreat were applied to impair the inhibition of thiosulfinate. Compared with no pretreatment group, methane yield was increased by 2.26, 32.18 and 42.2-fold, respectively which group was under pretreatment method of heat (100 ℃), alkali (pH 9) and combination.


Assuntos
Allium/química , Metano/biossíntese , Esgotos/química , Resíduos Sólidos , Ácidos Sulfínicos/farmacologia , Eliminação de Resíduos Líquidos/métodos , Allium/metabolismo , Anaerobiose , Biocombustíveis/análise , Reatores Biológicos/microbiologia , Liases de Carbono-Enxofre/antagonistas & inibidores , Dissulfetos , Fermentação , Modelos Teóricos , Esgotos/microbiologia , Ácidos Sulfínicos/administração & dosagem , Ácidos Sulfínicos/metabolismo
16.
Bioresour Technol ; 297: 122428, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31786038

RESUMO

Thiosulfinate, a nature antibiotic, existed in all parts of Allium thereby accumulating in kitchen waste vastly. However, few literatures were available related to its influence on volatile fatty acids (VFA) and hydrogen production when kitchen waste digestion technology was applied. This study aimed to explore the inhibitory effect and the relevant mechanism. Experimental results showed that the hydrogen accumulation decreased from 23.2 ± 0.8 to 8.2 ± 0.1 mL/g VSS (volatile suspended solid) and maximal total VFA yield decreased from 765.7 ± 21.2 to 376.4 ± 21.7 mg COD (chemical oxygen demand)/g VSS when the dosage of thiosulfinate increased from 0 to 12.5 µg/g VSS. The mechanism study indicated, compared with control group, that the butyric acid decreased from 59% to 20.1% of total VFA yield when reactor in present of 12.5 µg/g VSS thiosulfinate. Moreover, the relative activities of functional enzymes were inhibited 73.4% (butyryl-CoA) and 72.7% (NADH), respectively.


Assuntos
Eliminação de Resíduos , Esgotos , Anaerobiose , Reatores Biológicos , Ácidos Graxos Voláteis , Fermentação , Alimentos , Hidrogênio , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...