Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38127423

RESUMO

Germline CTLA-4 deficiency causes severe autoimmune diseases characterized by dysregulation of Foxp3+ Tregs, hyper-activation of effector memory T cells, and variable forms autoimmune cytopenia including gradual loss of B cells. Cancer patients with severe immune-related adverse events (irAE) after receiving anti-CTLA-4/PD-1 combination immunotherapy also have markedly reduced peripheral B cells. The immunological basis for B cell loss remains unexplained. Here, we probe the decline of B cells in human CTLA-4 knock-in mice by using anti-human CTLA-4 antibody Ipilimumab conjugated to a drug payload emtansine (Anti-CTLA-4 ADC). The anti-CTLA-4 ADC-treated mice have T cell hyper-proliferation and their differentiation into effector cells which results in B cell depletion. B cell depletion is mediated by both CD4 and CD8 T cells and at least partially rescued by anti-TNF-alpha antibody. These data revealed an unexpected antagonism between T and B cells and the importance of regulatory T cells in preserving B cells.


Assuntos
Abatacepte , Linfócitos B , Linfócitos T Reguladores , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Abatacepte/farmacologia , Animais , Camundongos , Antígeno CTLA-4/genética , Antígeno CTLA-4/imunologia , Depleção Linfocítica , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Apoptose/efeitos dos fármacos , Imunoglobulinas/sangue , Imunoglobulinas/imunologia , Células CHO , Cricetulus , Camundongos Endogâmicos C57BL , Masculino , Feminino
2.
Sci Transl Med ; 15(685): eabm5663, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36857433

RESUMO

Immune checkpoint inhibitors (ICIs), such as nivolumab and ipilimumab, not only elicit antitumor responses in a wide range of human cancers but also cause severe immune-related adverse events (irAEs), including death. A largely unmet medical need is to treat irAEs without abrogating the immunotherapeutic effect of ICIs. Although abatacept has been used to treat irAEs, it risks neutralizing the anti-cytotoxic T lymphocyte-associated protein 4 (CTLA-4) monoclonal antibodies administered for cancer therapy, thereby reducing the efficacy of anti-CTLA-4 immunotherapy. To avoid this caveat, we compared wild-type abatacept and mutants of CTLA-4-Ig for their binding to clinically approved anti-CTLA-4 antibodies and for their effect on both irAEs and immunotherapy conferred by anti-CTLA-4 and anti-PD-1 antibodies. Here, we report that whereas abatacept neutralized the therapeutic effect of anti-CTLA-4 antibodies, the mutants that bound to B7-1 and B7-2, but not to clinical anti-CTLA-4 antibodies, including clinically used belatacept, abrogated irAEs without affecting cancer immunotherapy. Our data demonstrate that anti-CTLA-4-induced irAEs can be corrected by provision of soluble CTLA-4 variants and that the clinically available belatacept may emerge as a broadly applicable drug to abrogate irAEs while preserving the therapeutic efficacy of CTLA-4-targeting ICIs.


Assuntos
Inibidores de Checkpoint Imunológico , Imunoterapia , Humanos , Abatacepte , Ipilimumab , Nivolumabe
3.
bioRxiv ; 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36909522

RESUMO

Germline CTLA-4 deficiency causes severe autoimmune diseases characterized by dysregulation of Foxp3+ Tregs, hyper-activation of effector memory T cells, and variable forms autoimmune cytopenia including gradual loss of B cells. Cancer patients with severe immune-related adverse events (irAE) after receiving anti-CTLA-4/PD-1 combination immunotherapy also have markedly reduced peripheral B cells. The immunological basis for B cell loss remains unexplained. Here we probe the decline of B cells in human CTLA-4 knock-in mice by using antihuman CTLA-4 antibody Ipilimumab conjugated to a drug payload emtansine (Anti-CTLA-4 ADC). The anti-CTLA-4 ADC-treated mice have T cell hyper-proliferation and their differentiation into effector cells which results in B cell depletion. B cell depletion is mediated by both CD4 and CD8 T cells and at least partially rescued by anti-TNF-alpha antibody. These data revealed an unexpected antagonism between T and B cells and the importance of regulatory T cells in preserving B cells.

4.
Cell Metab ; 34(8): 1088-1103.e6, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35921817

RESUMO

The molecular interactions that regulate chronic inflammation underlying metabolic disease remain largely unknown. Since the CD24-Siglec interaction regulates inflammatory response to danger-associated molecular patterns (DAMPs), we have generated multiple mouse strains with single or combined mutations of Cd24 or Siglec genes to explore the role of the CD24-Siglec interaction in metaflammation and metabolic disorder. Here, we report that the CD24-Siglec-E axis, but not other Siglecs, is a key suppressor of obesity-related metabolic dysfunction. Inactivation of the CD24-Siglec-E pathway exacerbates, while CD24Fc treatment alleviates, diet-induced metabolic disorders, including obesity, dyslipidemia, insulin resistance, and nonalcoholic steatohepatitis (NASH). Mechanistically, sialylation-dependent recognition of CD24 by Siglec-E induces SHP-1 recruitment and represses metaflammation to protect against metabolic syndrome. A first-in-human study of CD24Fc (NCT02650895) supports the significance of this pathway in human lipid metabolism and inflammation. These findings identify the CD24-Siglec-E axis as an innate immune checkpoint against metaflammation and metabolic disorder and suggest a promising therapeutic target for metabolic disease.


Assuntos
Doenças Metabólicas , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Animais , Antígeno CD24/genética , Antígeno CD24/metabolismo , Estudos Clínicos como Assunto , Humanos , Inflamação , Camundongos , Obesidade , Fagocitose , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo
6.
J Clin Invest ; 132(9)2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35239514

RESUMO

A combination of anti-CTLA-4 plus anti-PD-1/PD-L1 is the most effective cancer immunotherapy but causes high incidence of immune-related adverse events (irAEs). Here we report that targeting of HIF-1α suppressed PD-L1 expression on tumor cells and tumor-infiltrating myeloid cells, but unexpectedly induced PD-L1 in normal tissues by an IFN-γ-dependent mechanism. Targeting the HIF-1α/PD-L1 axis in tumor cells reactivated tumor-infiltrating lymphocytes and caused tumor rejection. The HIF-1α inhibitor echinomycin potentiated the cancer immunotherapeutic effects of anti-CTLA-4 therapy, with efficacy comparable to that of anti-CTLA-4 plus anti-PD-1 antibodies. However, while anti-PD-1 exacerbated irAEs triggered by ipilimumab, echinomycin protected mice against irAEs by increasing PD-L1 levels in normal tissues. Our data suggest that targeting HIF-1α fortifies the immune tolerance function of the PD-1/PD-L1 checkpoint in normal tissues but abrogates its immune evasion function in the tumor microenvironment to achieve safer and more effective immunotherapy.


Assuntos
Equinomicina , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias , Animais , Antígeno B7-H1 , Equinomicina/farmacologia , Evasão da Resposta Imune , Tolerância Imunológica , Linfócitos do Interstício Tumoral , Camundongos , Neoplasias/terapia , Microambiente Tumoral
7.
Cancers (Basel) ; 12(2)2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31991588

RESUMO

BACKGROUND: CTLA-4 was the first immune checkpoint targeted for cancer therapy and the first target validated by the FDA (Food and Drug Administration) after approval of the anti-CTLA-4 antibody, Ipilimumab. However, clinical response rates to anti-CTLA-4 antibodies are lower while the rates of immunotherapy-related adverse events (irAE) are higher than with anti-PD-1 antibodies. As a result, the effort to target CTLA-4 for cancer immunotherapy has stagnated. To reinvigorate CTLA-4-targeted immunotherapy, we and others have reported that rather than blocking CTLA-4 interaction with its cognate targets, CD80 and CD86, anti-CTLA-4 antibodies achieve their therapeutic responses through selective depletion of regulatory T cells in the tumor microenvironment. Accordingly, we have developed a new generation of anti-CTLA-4 antibodies with reduced irAE and enhanced antibody-dependent cell-mediated cytotoxicity/phagocytosis (ADCC/ADCP). A major unresolved issue is how to select appropriate cancer types for future clinical development. METHODS: We generated a landscape of the immune tumor microenvironment from RNAseq and genomic data of 7279 independent cancer samples belonging to 22 cancer types from The Cancer Genomics Atlas (TCGA) database. Based primarily on genomic and RNAseq data from pre-treatment clinical samples of melanoma patients who were later identified as responders and nonresponders to the anti-CTLA-4 antibody Ipilimumab, we identified 5 ranking components of responsiveness to anti-CTLA-4, including CTLA-4 gene expression, ADCC potential, mutation burden, as well as gene enrichment and cellular composition that favor CTLA-4 responsiveness. The total ranking number was calculated by the sum of 5 independent partitioning values, each comprised of 1-3 components. RESULTS: Our analyses predict metastatic melanoma as the most responsive cancer, as expected. Surprisingly, non-small cell lung carcinoma (NSCLC) is predicted to be highly responsive to anti-CTLA-4 antibodies. Single-cell RNAseq analysis and flow cytometry of human NSCLC-infiltrating T cells supports the potential of anti-CTLA-4 antibodies to selectively deplete intratumoral Treg. CONCLUSIONS: Our in silico and experimental analyses suggest that non-small cell lung carcinoma will likely respond to a new generation of anti-CTLA-4 monoclonal antibodies. Our approach provides an objective ranking of the sensitivity of human cancers to anti-CTLA-4 antibodies. The comprehensive ranking of major cancer types provides a roadmap for clinical development of the next generation of anti-CTLA-4 antibodies.

8.
Cancer Cell Int ; 19: 322, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31827396

RESUMO

BACKGROUND: Autologous tumor-infiltrating lymphocytes (Tils) immunotherapy is a promising treatment in patients with advanced hepatocellular cancer. Although Tils treatment has shown great promise, their persistence and the efficacy after adoptive-transfer are insufficient and remain a challenge. Studies have demonstrated that IL-15 and Akt inhibitor can regulate T cell differentiation and memory. Here, we constructed S-15 (Super human IL-15), a fusion protein consisting of human IL-15, the sushi domain of the IL-15 receptor α chain and human IgG-Fc. Herein we compared the effects of S-15 with IL-2 or in combination with Akti on the expansion and activation of Tils. METHODS: Hepatocellular cancer tissues were obtained from 6 patients, Tils were expanded using IL-2, IL-2/S-15, IL-2/Akti or in combination IL-2/S-15/Akti. At day 10, anti-CD3 antibody was added to the culture media and expanded to day 25. The composition, exhaustion and T-cell differentiation markers (CD45RA/CCR7) were analyzed by flow cytometry. RESULTS: We found that IL-2/S-15/Akti expanded Tils and showed the highest percentage of central memory CD45RA-CCR7+ phenotype prior to anti-CD3 antibody activation and after anti-CD3 antibody activation. T cells cultured with IL-2/S-15/Akti exhibited a mixture of CD4+, CD8+, and CD3+CD4-CD8- T cells; S-15 in combination with Akt inhibitor downregulated the expression of PD-1+Tim-3+ on Tils and decreased the Tregs in Tils. Additionally, the Tils expanded in the presence of the Akt inhibitor and S-15 showed enhanced antitumor activity as indicated by the increase in IFN-γ producing tumor infiltrating CD8+ T cells and without comprising the Tils expansion. CONCLUSION: Our study elucidates that IL-2/S-15/Akti expanded Tils and represent a viable source for the cellular therapy for patients with hepatocellular cancer.

9.
Cell Res ; 29(8): 609-627, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31267017

RESUMO

It remains unclear why the clinically used anti-CTLA-4 antibodies, popularly called checkpoint inhibitors, have severe immunotherapy-related adverse effects (irAEs) and yet suboptimal cancer immunotherapeutic effects (CITE). Here we report that while irAE-prone Ipilimumab and TremeIgG1 rapidly direct cell surface CTLA-4 for lysosomal degradation, the non-irAE-prone antibodies we generated, HL12 or HL32, dissociate from CTLA-4 after endocytosis and allow CTLA-4 recycling to cell surface by the LRBA-dependent mechanism. Disrupting CTLA-4 recycling results in robust CTLA-4 downregulation by all anti-CTLA-4 antibodies and confers toxicity to a non-irAE-prone anti-CTLA-4 mAb. Conversely, increasing the pH sensitivity of TremeIgG1 by introducing designed tyrosine-to-histidine mutations prevents antibody-triggered lysosomal CTLA-4 downregulation and dramatically attenuates irAE. Surprisingly, by avoiding CTLA-4 downregulation and due to their increased bioavailability, pH-sensitive anti-CTLA-4 antibodies are more effective in intratumor regulatory T-cell depletion and rejection of large established tumors. Our data establish a new paradigm for cancer research that allows for abrogating irAE while increasing CITE of anti-CTLA-4 antibodies.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Antígeno CTLA-4/metabolismo , Imunoterapia/efeitos adversos , Ipilimumab/uso terapêutico , Lisossomos/metabolismo , Neoplasias/terapia , Proteólise/efeitos dos fármacos , Animais , Antineoplásicos Imunológicos/efeitos adversos , Antineoplásicos Imunológicos/farmacologia , Células CHO , Antígeno CTLA-4/genética , Antígeno CTLA-4/imunologia , Cricetulus , Técnicas de Introdução de Genes , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Imunoglobulina G/farmacologia , Imunoglobulina G/uso terapêutico , Ipilimumab/efeitos adversos , Ipilimumab/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Linfócitos T Reguladores/imunologia , Transfecção
10.
Cell Biosci ; 8: 30, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29713453

RESUMO

Antibodies to human CTLA-4 have been shown to induce long-lasting protection against melanoma. It is assumed that these antibodies cause tumor rejection by blocking negative signaling from the B7-CTLA-4 interactions to enhance priming of naïve T cells in the lymphoid organs. Recently, we reported that anti-CTLA-4 antibody Ipilimumab effectively induces tumor rejection in vivo although it blocks neither B7 transendocytosis by CTLA-4 nor CTLA-4 binding to immobilized or cell-associated B7. Using genetic model in which the anti-CTLA-4 antibodies are unable to engage more than 50% of CTLA-4, we demonstrated that saturating binding of CTLA-4 is not necessary for tumor rejection. Our results argue against B7-CTLA-4 blockade as the mechanism of action for the clinically effective Ipilimumab. Moreover, Ipilimumab induces tumor rejection even in the absence of de novo T cell priming in the lymphoid organs. Thus, our data are inconsistent with key provisions of the prevailing hypothesis on mechanism of action by anti-CTLA-4 antibodies. Furthermore, anti-CTLA-4 antibodies effectively induce depletion of regulatory T (Treg) cells in tumor microenvironment but not in the peripheral lymphoid organs, which is strictly dependent on Fc receptor on host cells. Based on these data and other recent publications on the subject, we propose that anti-human CTLA-4 antibodies induce tumor rejection by selective depletion of Tregs in the tumors rather than blockade of B7-CTLA-4 interaction in lymphoid organs.

11.
Cell Res ; 28(4): 416-432, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29472691

RESUMO

It is assumed that anti-CTLA-4 antibodies cause tumor rejection by blocking negative signaling from B7-CTLA-4 interactions. Surprisingly, at concentrations considerably higher than plasma levels achieved by clinically effective dosing, the anti-CTLA-4 antibody Ipilimumab blocks neither B7 trans-endocytosis by CTLA-4 nor CTLA-4 binding to immobilized or cell-associated B7. Consequently, Ipilimumab does not increase B7 on dendritic cells (DCs) from either CTLA4 gene humanized (Ctla4 h/h ) or human CD34+ stem cell-reconstituted NSG™ mice. In Ctla4 h/m mice expressing both human and mouse CTLA4 genes, anti-CTLA-4 antibodies that bind to human but not mouse CTLA-4 efficiently induce Treg depletion and Fc receptor-dependent tumor rejection. The blocking antibody L3D10 is comparable to the non-blocking Ipilimumab in causing tumor rejection. Remarkably, L3D10 progenies that lose blocking activity during humanization remain fully competent in inducing Treg depletion and tumor rejection. Anti-B7 antibodies that effectively block CD4 T cell activation and de novo CD8 T cell priming in lymphoid organs do not negatively affect the immunotherapeutic effect of Ipilimumab. Thus, clinically effective anti-CTLA-4 mAb causes tumor rejection by mechanisms that are independent of checkpoint blockade but dependent on the host Fc receptor. Our data call for a reappraisal of the CTLA-4 checkpoint blockade hypothesis and provide new insights for the next generation of safe and effective anti-CTLA-4 mAbs.


Assuntos
Anticorpos Bloqueadores/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Antígeno CTLA-4/imunologia , Ipilimumab/uso terapêutico , Neoplasias/terapia , Animais , Anticorpos Bloqueadores/imunologia , Antineoplásicos Imunológicos/imunologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Antígeno CTLA-4/antagonistas & inibidores , Feminino , Humanos , Imunoterapia/métodos , Ipilimumab/imunologia , Ativação Linfocitária/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Neoplasias/patologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia
12.
Cell Res ; 28(4): 433-447, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29463898

RESUMO

Anti-CTLA-4 monoclonal antibodies (mAbs) confer a cancer immunotherapeutic effect (CITE) but cause severe immunotherapy-related adverse events (irAE). Targeting CTLA-4 has shown remarkable long-term benefit and thus remains a valuable tool for cancer immunotherapy if the irAE can be brought under control. An animal model, which recapitulates clinical irAE and CITE, would be valuable for developing safer CTLA-4-targeting reagents. Here, we report such a model using mice harboring the humanized Ctla4 gene. In this model, the clinically used drug, Ipilimumab, induced severe irAE especially when combined with an anti-PD-1 antibody; whereas another mAb, L3D10, induced comparable CITE with very mild irAE under the same conditions. The irAE corresponded to systemic T cell activation and resulted in reduced ratios of regulatory to effector T cells (Treg/Teff) among autoreactive T cells. Using mice that were either homozygous or heterozygous for the human allele, we found that the irAE required bi-allelic engagement, while CITE only required monoallelic engagement. As with the immunological distinction for monoallelic vs bi-allelic engagement, we found that bi-allelic engagement of the Ctla4 gene was necessary for preventing conversion of autoreactive T cells into Treg cells. Humanization of L3D10, which led to loss of blocking activity, further increased safety without affecting the therapeutic effect. Taken together, our data demonstrate that complete CTLA-4 occupation, systemic T cell activation and preferential expansion of self-reactive T cells are dispensable for tumor rejection but correlate with irAE, while blocking B7-CTLA-4 interaction impacts neither safety nor efficacy of anti-CTLA-4 antibodies. These data provide important insights for the clinical development of safer and potentially more effective CTLA-4-targeting immunotherapy.


Assuntos
Antineoplásicos Imunológicos/efeitos adversos , Antígeno CTLA-4/imunologia , Imunoterapia/efeitos adversos , Ipilimumab/efeitos adversos , Neoplasias/terapia , Animais , Antígeno CTLA-4/genética , Linhagem Celular Tumoral , Feminino , Técnicas de Introdução de Genes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Neoplasias/patologia , Receptor de Morte Celular Programada 1/imunologia
13.
Clin Cancer Res ; 23(1): 239-249, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27435398

RESUMO

PURPOSE: Oncolytic adenoviruses (Ad) represent an innovative approach to cancer therapy. Its efficacy depends on multiple actions, including direct tumor lysis and stimulation of antiviral and antitumor immune responses. In this study, we investigated the roles of T-cell responses in oncolytic adenoviral therapy. EXPERIMENTAL DESIGN: An immunocompetent and viral replication-permissive Syrian hamster tumor model was used. The therapeutic mechanisms of oncolytic Ad were investigated by T-cell deletion, immunohistochemical staining, and CTL assay. RESULTS: Deletion of T cells with an anti-CD3 antibody completely demolished the antitumor efficacy of oncolytic Ad. Intratumoral injection of Ad induced strong virus- and tumor-specific T-cell responses, as well as antiviral antibody response. Both antiviral and antitumor T-cell responses contributed to the efficacy of oncolytic Ad. Deletion of T cells increased viral replication and extended the persistence of infectious virus within tumors but almost abrogated the antitumor efficacy. Preexisting antiviral immunity promoted the clearance of injected oncolytic Ad from tumors but had no effect on antitumor efficacy. Strikingly, the repeated treatment with oncolytic Ad has strong therapeutic effect on relapsed tumors or tumors insensitive to the primary viral therapy. CONCLUSIONS: These results demonstrate that T cell-mediated immune responses outweigh the direct oncolysis in mediating antitumor efficacy of oncolytic Ad. Our data have a high impact on redesigning the regimen of oncolytic Ad for cancer treatment. Clin Cancer Res; 23(1); 239-49. ©2016 AACR.


Assuntos
Adenoviridae , Vetores Genéticos , Neoplasias/imunologia , Neoplasias/patologia , Terapia Viral Oncolítica , Vírus Oncolíticos , Linfócitos T/imunologia , Replicação Viral/imunologia , Vírus/imunologia , Adenoviridae/genética , Adenoviridae/imunologia , Animais , Anticorpos Antivirais/imunologia , Linhagem Celular Tumoral , Cricetinae , Citotoxicidade Imunológica , Modelos Animais de Doenças , Feminino , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Depleção Linfocítica , Neoplasias/terapia , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , Linfócitos T/metabolismo , Linfócitos T Citotóxicos/imunologia , Carga Tumoral/genética , Carga Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
14.
J Immunol ; 194(10): 4997-5006, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25876763

RESUMO

Tumor resistance is a major hurdle to anti-Her2/neu Ab-based cancer therapy. Current strategies to overcome tumor resistance focus on tumor cell-intrinsic resistance. However, the extrinsic mechanisms, especially the tumor microenvironment, also play important roles in modulating the therapeutic response and resistance of the Ab. In this study, we demonstrate that tumor progression is highly associated with TAMs with immune-suppressive M2 phenotypes, and deletion of TAMs markedly enhanced the therapeutic effects of anti-Her2/neu Ab in a HER2/neu-dependent breast cancer cell TUBO model. Tumor local delivery of IL-21 can skew TAM polarization away from the M2 phenotype to a tumor-inhibiting M1 phenotype, which rapidly stimulates T cell responses against tumor and dramatically promotes the therapeutic effect of anti-Her2 Ab. Skewing of TAM polarization by IL-21 relies substantially on direct action of IL-21 on TAMs rather than stimulation of T and NK cells. Thus, our findings identify the abundant TAMs as a major extrinsic barrier for anti-Her2/neu Ab therapy and present a novel approach to combat this extrinsic resistance by tumor local delivery of IL-21 to skew TAM polarization. This study offers a therapeutic strategy to modulate the tumor microenvironment to overcome tumor-extrinsic resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos/imunologia , Interleucinas/imunologia , Macrófagos/imunologia , Neoplasias Mamárias Experimentais/imunologia , Microambiente Tumoral/imunologia , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Feminino , Citometria de Fluxo , Imuno-Histoquímica , Interleucinas/administração & dosagem , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fenótipo , Reação em Cadeia da Polimerase em Tempo Real , Receptor ErbB-2/antagonistas & inibidores , Trastuzumab
15.
J Hepatol ; 61(6): 1297-303, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25016226

RESUMO

BACKGROUND & AIMS: Liver cancer has a very dismal prognosis due to lack of effective therapy. Here, we studied the therapeutic effects of hyper-interleukin15 (hyper-IL-15), which is composed of IL-15 and the sushi domain of the IL-15 receptor α chain, on metastatic and autochthonous liver cancers. METHODS: Liver metastatic tumour models were established by intraportally injecting syngeneic mice with murine CT26 colon carcinoma cells or B16-OVA melanoma cells. Primary hepatocellular carcinoma (HCC) was induced by diethylnitrosamine (DEN). A hydrodynamics-based gene delivery method was used to achieve sustained hyper-IL-15 expression in the liver. RESULTS: Liver gene delivery of hyper-IL-15 robustly expanded CD8(+) T and NK cells, leading to a long-term (more than 40 days) accumulation of CD8(+) T cells in vivo, especially in the liver. Hyper-IL-15 treatment exerted remarkable therapeutic effects on well-established liver metastatic tumours and even on DEN-induced autochthonous HCC, and these effects were abolished by depletion of CD8(+) T cells but not NK cells. Hyper-IL-15 triggered IL-12 and interferon-γ production and reduced the expression of co-inhibitory molecules on dendritic cells in the liver. Adoptive transfer of T cell receptor (TCR) transgenic OT-1 cells showed that hyper-IL-15 preferentially expanded tumour-specific CD8(+) T cells and promoted their interferon-γ synthesis and cytotoxicity. CONCLUSIONS: Liver delivery of hyper-IL-15 provides an effective therapy against well-established metastatic and autochthonous liver cancers in mouse models by preferentially expanding tumour-specific CD8(+) T cells and promoting their anti-tumour effects.


Assuntos
Linfócitos T CD8-Positivos/patologia , Proliferação de Células/efeitos dos fármacos , Interleucina-15/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Metástase Neoplásica/tratamento farmacológico , Proteínas Recombinantes de Fusão/uso terapêutico , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Interferon gama/metabolismo , Interleucina-12/metabolismo , Interleucina-15/farmacologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/patologia , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/secundário , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica/patologia , Proteínas Recombinantes de Fusão/farmacologia , Resultado do Tratamento
16.
Oncoimmunology ; 3(11): e963409, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25941592

RESUMO

Liver cancer has a poor prognosis. Our recent study demonstrates that hyper-IL-15, composed of IL-15 and the sushi domain of IL-15 receptor α chain, provides an effective therapy against well-established metastatic and autochthonous liver cancers in mouse models by triggering activation and expansion of hepatic CD8+ T cells.

17.
Protein Cell ; 3(6): 441-9, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22717982

RESUMO

It has been well established that immune surveillance plays critical roles in preventing the occurrence and progression of tumor. More and more evidence in recent years showed the host anti-tumor immune responses also play important roles in the chemotherapy and radiotherapy of cancers. Our previous study found that tumor- targeting therapy of anti-HER2/neu mAb is mediated by CD8(+) T cell responses. However, we found here that enhancement of CD8(+) T cell responses by combination therapy with IL-15R/IL-15 fusion protein or anti-CD40, which are strong stimultors for T cell responses, failed to promote the tumor therapeutic effects of anti-HER2/neu mAb. Analysis of tumor microenviornment showed that tumor tissues were heavily infiltrated with the immunosuppressive macrophages and most tumor infiltrating T cells, especially CD8(+) T cells, expressed high level of inhibitory co-signaling receptor PD-1. These data suggest that tumor microenvironment is dominated by the immunosuppressive strategies, which thwart anti-tumor immune responses. Therefore, the successful tumor therapy should be the removal of inhibitory signals in the tumor microenvironment in combination with other therapeutic strategies.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/imunologia , Tolerância Imunológica/imunologia , Receptor ErbB-2/imunologia , Microambiente Tumoral/imunologia , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...