Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 14(2): 199-210, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36793435

RESUMO

B cell lymphoma 6 (BCL6), a highly regulated transcriptional repressor, is deregulated in several forms of non-Hodgkin lymphoma (NHL), most notably in diffuse large B-cell lymphoma (DLBCL). The activities of BCL6 are dependent on protein-protein interactions with transcriptional co-repressors. To find new therapeutic interventions addressing the needs of patients with DLBCL, we initiated a program to identify BCL6 inhibitors that interfere with co-repressor binding. A virtual screen hit with binding activity in the high micromolar range was optimized by structure-guided methods, resulting in a novel and highly potent inhibitor series. Further optimization resulted in the lead candidate 58 (OICR12694/JNJ-65234637), a BCL6 inhibitor with low nanomolar DLBCL cell growth inhibition and an excellent oral pharmacokinetic profile. Based on its overall favorable preclinical profile, OICR12694 is a highly potent, orally bioavailable candidate for testing BCL6 inhibition in DLBCL and other neoplasms, particularly in combination with other therapies.

2.
Bioorg Med Chem Lett ; 20(1): 294-8, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19906529

RESUMO

Pursuing our efforts in designing 5-pyrimidylhydroxamic acid anti-cancer agents, we have identified a new series of potent histone deacetylase (HDAC) inhibitors. These compounds exhibit enzymatic HDAC inhibiting properties with IC(50) values in the nanomolar range and inhibit tumor cell proliferation at similar levels. Good solubility, moderate bioavailability, and promising in vivo activity in xenograft model made this series of compounds interesting starting points to design new potent HDAC inhibitors.


Assuntos
Antineoplásicos/química , Inibidores de Histona Desacetilases/química , Histona Desacetilases/química , Ácidos Hidroxâmicos/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Desenho de Fármacos , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/farmacologia , Camundongos , Camundongos Nus , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Clin Cancer Res ; 15(22): 6841-51, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19861438

RESUMO

PURPOSE: Histone deacetylase (HDAC) inhibitors have shown promising clinical activity in the treatment of hematologic malignancies, but their activity in solid tumor indications has been limited. Most HDAC inhibitors in clinical development only transiently induce histone acetylation in tumor tissue. Here, we sought to identify a "second-generation" class I HDAC inhibitor with prolonged pharmacodynamic response in vivo, to assess whether this results in superior antitumoral efficacy. EXPERIMENTAL DESIGN: To identify novel HDAC inhibitors with superior pharmacodynamic properties, we developed a preclinical in vivo tumor model, in which tumor cells have been engineered to express fluorescent protein dependent on HDAC1 inhibition, thereby allowing noninvasive real-time evaluation of the tumor response to HDAC inhibitors. RESULTS: In vivo pharmacodynamic analysis of 140 potent pyrimidyl-hydroxamic acid analogues resulted in the identification of JNJ-26481585. Once daily oral administration of JNJ-26481585 induced continuous histone H3 acetylation. The prolonged pharmacodynamic response translated into complete tumor growth inhibition in Ras mutant HCT116 colon carcinoma xenografts, whereas 5-fluorouracil was less active. JNJ-26481585 also fully inhibited the growth of C170HM2 colorectal liver metastases, whereas again 5-fluorouracil/Leucovorin showed modest activity. Further characterization revealed that JNJ-26481585 is a pan-HDAC inhibitor with marked potency toward HDAC1 (IC(50), 0.16 nmol/L). CONCLUSIONS: The potent antitumor activity as a single agent in preclinical models combined with its favorable pharmacodynamic profile makes JNJ-26481585 a promising "second-generation" HDAC inhibitor. The compound is currently in clinical studies, to evaluate its potential applicability in a broad spectrum of both solid and hematologic malignancies.


Assuntos
Antineoplásicos/administração & dosagem , Inibidores de Histona Desacetilases/administração & dosagem , Ácidos Hidroxâmicos/administração & dosagem , Neoplasias/tratamento farmacológico , Animais , Apoptose , Proliferação de Células , Neoplasias do Colo/patologia , Fluoruracila/farmacologia , Histonas/química , Humanos , Concentração Inibidora 50 , Neoplasias Hepáticas/secundário , Proteínas Luminescentes/química , Masculino , Camundongos , Metástase Neoplásica , Transplante de Neoplasias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...