Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sheng Li Xue Bao ; 76(4): 561-575, 2024 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-39192789

RESUMO

As the largest organelle in eukaryotic cells, the endoplasmic reticulum (ER) plays a crucial role in regulating intracellular protein folding, translation and assembly. Multiple quality control mechanisms in the ER ensure accurate modification of proteins in the ER lumen are accurately modified, thus maintaining calcium homeostasis, oxidative stress, cellular senescence and apoptosis. These mechanisms include ER stress (ERS), ER autophagy (ER-phagy, ERPA) and ER-associated degradation (ERAD). Intervertebral disc degeneration (IDD) is an age-related degenerative disease of the spine. Although the pathogenesis of IDD has not been fully elucidated, emerging evidence suggests that the ER quality control system may be involved in its progression. Previous studies have focused on mitochondrial quality control and its related mechanisms in diseases, with limited systematic summaries on the ER quality control system. In this paper, we comprehensively reviewed the molecular mechanisms of the ER quality control system and investigated its association with IDD. In addition, we summarized the potential therapeutic strategies targeting the ER quality control system to attenuate IDD progression, offering new insights into the pathogenesis and regenerative repair strategies of IDD.


Assuntos
Autofagia , Estresse do Retículo Endoplasmático , Retículo Endoplasmático , Degeneração do Disco Intervertebral , Humanos , Degeneração do Disco Intervertebral/terapia , Degeneração do Disco Intervertebral/fisiopatologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/fisiologia , Autofagia/fisiologia , Estresse do Retículo Endoplasmático/fisiologia , Animais , Degradação Associada com o Retículo Endoplasmático/fisiologia
2.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5294-5303, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-38114119

RESUMO

This paper aims to investigate the effects and mechanisms of adipose-derived stem cells-exosomes(ADSCs-exos) toge-ther with aucubin in protecting human-derived nucleus pulposus cells(NPCs) from inflammatory injury, senescence, and apoptosis. The tert-butyl hydroperoxide(TBHP)-induced NPCs were assigned into normal, model, aucubin, ADSCs-exos, and aucubin+ADSCs-exos groups. The cell viability was examined by cell counting kit-8(CCK-8), cell proliferation by EdU staining, cell senescence by senescence-associated-ß-galactosidase(SA-ß-Gal), and cell cycle and apoptosis by flow cytometry. Enzyme-linked immunosorbent assay was employed to examine the expression of interleukin-1ß(IL-1ß), IL-10, and tumor necrosis factor-α(TNF-α). Real-time fluorescence quantitative PCR and Western blot were employed to determine the mRNA and protein levels of aggregated proteoglycan(aggrecan), type Ⅱ collagen alpha 1(COL2A1), Toll-like receptor 4(TLR4), and nuclear factor-kappa B(NF-κB). The results showed that compared with the model group, the aucubin or ADSCs-exos group showed enhanced viability and proliferation of NPCs, decreased proportion of G_0/G_1 phase cells, increased proportion of S phase cells, reduced apoptosis and proportion of cells in senescence, lowered IL-1ß and TNF-α levels, elevated IL-10 level, down-regulated mRNA and protein levels of TLR4 and NF-κB, and up-regulated mRNA and protein levels of aggrecan and COL2A1. Compared with the aucubin or ADSCs-exos group, the aucubin+ADSCs-exos combination further increased the viability and proliferation of NPCs, decreased the proportion of G_0/G_1 phase cells, increased the proportion of S phase cells, reduced the apoptosis and proportion of cells in senescence, lowered the IL-1ß and TNF-α levels, elevated the IL-10 level, down-regulated the mRNA and protein levels of TLR4 and NF-κB, and up-regulated the mRNA and protein levels of aggrecan and COL2A1. In summary, both aucubin and ADSCs-exos could exert protective effects by inhibiting inflammatory responses, reducing apoptosis and senescence of NPCs, improving cell viability and proliferation as well as extracellular matrix synthesis, which may be associated with the inhibition of TLR4/NF-κB signaling pathway activation. The combination of both plays a synergistic role in the protective effects.


Assuntos
NF-kappa B , Núcleo Pulposo , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Interleucina-10 , Núcleo Pulposo/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Agrecanas/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...