RESUMO
BACKGROUND: Myostatin (Mstn) plays an important role in adipocyte growth, differentiation and metabolism, leading to the development of obesity. OBJECTIVES: We aimed to explore the effect of Mstn on white fat browning in a mouse model of type 2 diabetes mellitus (T2DM). MATERIAL AND METHODS: Twelve wild-type (WT), 12 heterozygous (Mstn(+/-)) and 12 homozygous (Mstn(-/-)) male mice were randomly divided into 6 groups: WT, Mstn(+/-), Mstn(-/-), WT+DM, Mstn(+/-)+DM, and Mstn(-/-)+DM. The first 3 groups were fed normal chow, while the last 3 were fed high-fat diet and administered streptozotocin to generate T2DM. Subsequently, body mass, length, and white and brown fat masses were measured, after which Lee's index, white-brown ratio and fat index were calculated. The serum free fatty acid (FFA) levels were detected using enzyme-linked immunosorbent assay (ELISA). Hematoxylin and eosin (H&E) staining was used to analyze white and brown fat cell morphology. The relative expression levels of peroxisome proliferator-activated receptor-gamma (PPARγ), peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1α), uncoupling protein 1 (UCP1), and cluster of differentiation 137 (CD137) protein were determined with western blotting. RESULTS: The Mstn(-/-) group displayed higher levels of PPARγ, PGC-1α and CD137 proteins in white and brown fat compared to the WT and Mstn(+/-) groups, while the expression level of UCP1 protein in the Mstn(-/-) group was higher than in the WT group. The expression levels of PPARγ, PGC-1α, UCP1, and CD137 proteins in the WT+DM group were lower than in the WT group. Moreover, PPARγ, PGC-1α, UCP1, and CD137 proteins were more highly expressed in the Mstn(-/-)+DM group compared to the WT+DM and Mstn(+/-)+DM groups. CONCLUSIONS: The Mstn gene inhibition antagonizes obesity phenotypes, such as white fat accumulation and lipid metabolism derangement caused by T2DM, thus promoting white fat browning.