Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 6596, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39097588

RESUMO

Dielectric capacitors are highly desired for electronic systems owing to their high-power density and ultrafast charge/discharge capability. However, the current dielectric capacitors suffer severely from the thermal instabilities, with sharp deterioration of energy storage performance at elevated temperatures. Here, guided by phase-field simulations, we conceived and fabricated the self-assembled metadielectric nanostructure with HfO2 as second-phase in BaHf0.17Ti0.83O3 relaxor ferroelectric matrix. The metadielectric structure can not only effectively increase breakdown strength, but also broaden the working temperature to 400 oC due to the enhanced relaxation behavior and substantially reduced conduction loss. The energy storage density of the metadielectric film capacitors can achieve to 85 joules per cubic centimeter with energy efficiency exceeding 81% in the temperature range from 25 °C to 400 °C. This work shows the fabrication of capacitors with potential applications in high-temperature electric power systems and provides a strategy for designing advanced electrostatic capacitors through a metadielectric strategy.

2.
ACS Appl Mater Interfaces ; 11(25): 22677-22683, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31194498

RESUMO

High-quality flexible magnetic oxide thin films have promoted a wide range of potential applications in spintronic devices due to their unique physical properties. To obtain the optimized microwave magnetism for future all-oxide-based spintronic applications, high-quality oxide materials with excellent epitaxial quality as well as specific bending properties related to ferromagnetic resonance are high in demand. Here, (001)-oriented La0.67Sr0.33MnO3 epitaxial thin films with different thicknesses have been grown and subsequently transferred onto flexible poly(dimethylsiloxane) substrates. The microwave magnetisms of these film samples have been investigated under various bending states. Under bending, the ferromagnetic resonance lineshape of the film gradually transits from a single mode to a superposition of multimodes, possibly because of the uneven distribution of magnetization in the bending film at X-band. This phenomenon is more apparent when the direction of the applied magnetic field goes close to the out-of-plane of the film. Hence, an integration of invariable and continuous tuning of ferromagnetic resonance field under various mechanical bending can be achieved in one same sample by just tuning the direction of the applied magnetic field, which reveals that the flexible La0.67Sr0.33MnO3 thin films have huge potential in the applications in future flexible multifunctional devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...