Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Med Biol Eng Comput ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967693

RESUMO

Lumbar disc herniation is one of the most prevalent orthopedic issues in clinical practice. The lumbar spine is a crucial joint for movement and weight-bearing, so back pain can significantly impact the everyday lives of patients and is prone to recurring. The pathogenesis of lumbar disc herniation is complex and diverse, making it difficult to identify and assess after it has occurred. Magnetic resonance imaging (MRI) is the most effective method for detecting injuries, requiring continuous examination by medical experts to determine the extent of the injury. However, the continuous examination process is time-consuming and susceptible to errors. This study proposes an enhanced model, BE-YOLOv5, for hierarchical detection of lumbar disc herniation from MRI images. To tailor the training of the model to the job requirements, a specialized dataset was created. The data was cleaned and improved before the final calibration. A final training set of 2083 data points and a test set of 100 data points were obtained. The YOLOv5 model was enhanced by integrating the attention mechanism module, ECAnet, with a 3 × 3 convolutional kernel size, substituting its feature extraction network with a BiFPN, and implementing structural system pruning. The model achieved an 89.7% mean average precision (mAP) and 48.7 frames per second (FPS) on the test set. In comparison to Faster R-CNN, original YOLOv5, and the latest YOLOv8, this model performs better in terms of both accuracy and speed for the detection and grading of lumbar disc herniation from MRI, validating the effectiveness of multiple enhancement methods. The proposed model is expected to be used for diagnosing lumbar disc herniation from MRI images and to demonstrate efficient and high-precision performance.

2.
Heliyon ; 9(6): e16837, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37332965

RESUMO

As the urbanization rate in the world has increased rapidly, the housing vacancy problem has become serious and attracting more attention. Calculating and analyzing vacant housing can help reduce the wasteful use of resources. This paper measures the housing vacancy rate and housing vacancy stock in the Shandong Peninsula urban agglomeration using night-time lighting and land use data. The results show that the average housing vacancy rate in the Shandong Peninsula urban agglomeration rose rapidly from 14.68% in 2000 to 29.71% in 2015 before declining slowly to 29.49% in 2020. Since urban population growth is lower than the housing construction rate, the average annual growth of housing vacancy stock between 2000 and 2020 exceeds 3 million square meters in megacities and is around 1-2 million square meters in large and medium-sized cities. The vacant housing has caused considerable waste of housing resources. The driving factors of the housing vacancy were further analyzed using the LMDI decomposition method. Results indicate that the economic development level is the most significant driving factor of the vacant housing stock. In addition, the value effect of unit floor areas is the major driving factor inhibiting the growth of vacant housing stock, while the decline of unit floor area value is conducive to the reduction of this stock.

3.
Micromachines (Basel) ; 13(11)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36363826

RESUMO

Accurate cutting force prediction is crucial in improving machining precision and surface quality in the micro-milling process, in which tool wear and runout are essential factors. A generic analytic cutting force model considering the effect of tool edge radius on tool flank wear and tool runout in the micro-end milling process is proposed. Based on the analytic modeling of the cutting part of the cutting edge in the end face of the micro-end mill bottom, the actual radius model of the worn tool is established, considering the tool edge radius and tool flank wear. The tool edge radius, tool wear, tool runout, trochoidal trajectories of the current cutting edge, and all cutting edges in the previous cycle are comprehensively considered in the instantaneous uncut chip thickness calculation and the cutter-workpiece engagement determination. The cutting force coefficient model including tool wear is established. A series of milling experiments are performed to verify the accuracy and effectiveness of the proposed cutting force model. The results show that the predicted cutting forces are in good agreement with the experimental cutting forces, and it is necessary to consider tool wear in the micro-milling force modeling. The results indicate that tool wear has a significant influence on the cutting forces and cutting force coefficients in the three directions, and the influences of tool wear on the axial cutting force and axial force coefficient are the largest, respectively. The proposed cutting force model can contribute to real-time machining process monitoring, cutting parameters optimization and ensuring machining quality.

4.
ISA Trans ; 120: 147-166, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33752886

RESUMO

Compared with other additive manufacturing processes, the metal-based additive manufacturing (MAM) can build higher precision and higher density parts, and have unique advantages in the applications to automotive, medical, and aerospace industries. However, the quality defects of builds, such as dimensional accuracy, layer morphology, mechanical and metallurgical defects, have been hindering the wide applications of MAM technologies. These decrease the repeatability and consistency of build quality. In order to overcome these shortcomings and to produce high-quality parts, it is very important to carry out online monitoring and process control in the building process. A process monitoring system is demanded which can automatically optimize the process parameters to eliminate incipient defects, improve the process stability and the final build quality. In this paper, the current representative studies are selected from the literature, and the research progress of MAM process monitoring and control are surveyed. Taking the key components of the MAM monitoring system as the mainstream, this study investigates the MAM monitoring system, measurement and signal acquisition, signal and image processing, as well as machine learning methods for the process monitoring and quality classification. The advantages and disadvantages of their algorithmic implementations and applications are discussed and summarized. Finally, the prospects of MAM process monitoring researches are advised.

5.
Materials (Basel) ; 14(7)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805355

RESUMO

In the selective laser melting process, metal powder melted by the laser heat source generates large instantaneous energy, resulting in transient high temperature and complex stress distribution. Different temperature gradients and anisotropy finally determine the microstructure after melting and affect the build quality and mechanical properties as a result. It is important to monitor and investigate the temperature and stress distribution evolution. Due to the difficulties in online monitoring, finite element methods (FEM) are used to simulate and predict the building process in real time. In this paper, a thermo-mechanical coupled FEM model is developed to predict the thermal behaviors of the melt pool by using Gaussian moving heat source. The model could simulate the shapes of the melt pool, distributions of temperature and stress under different process parameters through FEM. The influences of scanning speed, laser power, and spot diameter on the distribution of the melt pool temperature and stress are investigated in the SLM process of Al6063, which is widely applied in aerospace, transportation, construction and other fields due to its good corrosion resistance, sufficient strength and excellent process performance. Based on transient analysis, the relationships are identified among these process parameters and the melt pool morphology, distribution of temperature and thermal stress. It is shown that the maximum temperature at the center point of the scanning tracks will gradually increase with the increment of laser power under the effect of thermal accumulation and heat conduction, as the preceded scanning will preheat the subsequent scanning tracks. It is recommended that the parameters with optimized laser power (P = 175-200 W), scanning speed (v = 200-300 mm/s) and spot diameter (D = 0.1-0.15 mm) of aluminum alloy powder can produce a high building quality of the SLM parts under the pre-set conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...