Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Int J Pharm ; 651: 123758, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38160991

RESUMO

Enterobacteriaceae species are part of the 2017 World Health Organization antibiotic-resistant priority pathogens list for development of novel medicines. Multidrug-resistant Klebsiella pneumoniae is an increasing threat to public health and has become a relevant human pathogen involved in life-threatening infections. Phage therapy involves the use of phages or their lytic endolysins as bioagents for the treatment of bacterial infectious diseases. Gram-negative bacteria have an outer membrane, making difficult the access of endolysins to the peptidoglycan. Here, three endolysins from prophages infecting three distinct Enterobacterales species, Kp2948-Lys from K. pneumoniae, Ps3418-Lys from Providencia stuartii, and Kaer26608-Lys from Klebsiella aerogenes, were purified and exhibited antibacterial activity against their specific bacterium species verified by zymogram assays. These three endolysins were successfully associated to liposomes composed of dimyristoyl phosphatidyl choline (DMPC), dioleoyl phosphatidyl ethanolamine (DOPE) and cholesteryl hemisuccinate (CHEMS) at a molar ratio (4:4:2), with an encapsulation efficiency ranging from 24 to 27%. Endolysins encapsulated in liposomes resulted in higher antibacterial activity compared to the respective endolysin in the free form, suggesting that the liposome-mediated delivery system enhances fusion with outer membrane and delivery of endolysins to the target peptidoglycan. Obtained results suggest that Kp2948-Lys appears to be specific for K. pneumoniae, while Ps3418-Lys and Kaer26608-Lys appear to have a broader antibacterial spectrum. Endolysins incorporated in liposomes constitute a promising weapon, applicable in the several dimensions (human, animals and environment) of the One Health approach, against multidrug-resistant Enterobacteriaceae.


Assuntos
Bacteriófagos , Prófagos , Animais , Humanos , Enterobacteriaceae , Lipossomos , Antibacterianos/farmacologia , Peptidoglicano , Endopeptidases/farmacologia , Bactérias
2.
Front Microbiol ; 14: 1325077, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38098668

RESUMO

Hypervirulence and carbapenem-resistant have emerged as two distinct evolutionary pathotypes of Klebsiella pneumoniae, with both reaching their epidemic success and posing a great threat to public health. However, as the boundaries separating these two pathotypes fade, we assist a worrisome convergence in certain high-risk clones, causing hospital outbreaks and challenging every therapeutic option available. To better understand the basic biology of these pathogens, this review aimed to describe the virulence factors and their distribution worldwide among carbapenem-resistant highly virulent or hypervirulent K. pneumoniae strains, as well as to understand the interplay of these virulence strains with the carbapenemase produced and the sequence type of such strains. As we witness a shift in healthcare settings where carbapenem-resistant highly virulent or hypervirulent K. pneumoniae are beginning to emerge and replace classical K. pneumoniae strains, a better understanding of these strains is urgently needed for immediate and appropriate response.

4.
J Antimicrob Chemother ; 78(5): 1300-1308, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36999363

RESUMO

BACKGROUND: Carbapenem-resistant Klebsiella pneumoniae (CRKP) strains are of particular concern, especially strains with mobilizable carbapenemase genes such as blaKPC, blaNDM or blaOXA-48, given that carbapenems are usually the last line drugs in the ß-lactam class and, resistance to this sub-class is associated with increased mortality and frequently co-occurs with resistance to other antimicrobial classes. OBJECTIVES: To characterize the genomic diversity and international dissemination of CRKP strains from tertiary care hospitals in Lisbon, Portugal. METHODS: Twenty CRKP isolates obtained from different patients were subjected to WGS for species confirmation, typing, drug resistance gene detection and phylogenetic reconstruction. Two additional genomic datasets were included for comparative purposes: 26 isolates (ST13, ST17 and ST231) from our collection and 64 internationally available genomic assemblies (ST13). RESULTS: By imposing a 21 SNP cut-off on pairwise comparisons we identified two genomic clusters (GCs): ST13/GC1 (n = 11), all bearing blaKPC-3, and ST17/GC2 (n = 4) harbouring blaOXA-181 and blaCTX-M-15 genes. The inclusion of the additional datasets allowed the expansion of GC1/ST13/KPC-3 to 23 isolates, all exclusively from Portugal, France and the Netherlands. The phylogenetic tree reinforced the importance of the GC1/KPC-3-producing clones along with their rapid emergence and expansion across these countries. The data obtained suggest that the ST13 branch emerged over a decade ago and only more recently did it underpin a stronger pulse of transmission in the studied population. CONCLUSIONS: This study identifies an emerging OXA-181/ST17-producing strain in Portugal and highlights the ongoing international dissemination of a KPC-3/ST13-producing clone from Portugal.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Klebsiella , Humanos , Klebsiella pneumoniae , Filogenia , Portugal/epidemiologia , beta-Lactamases/genética , Proteínas de Bactérias/genética , Carbapenêmicos , Genômica , Testes de Sensibilidade Microbiana , Infecções por Klebsiella/epidemiologia , Antibacterianos/farmacologia , Chaperonas Moleculares/genética , Proteínas Supressoras de Tumor/genética
5.
Int J Mol Sci ; 23(17)2022 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-36077542

RESUMO

Pseudomonas aeruginosa is a Gram-negative opportunistic bacterium that presents resistance to several antibiotics, thus, representing a major threat to human and animal health. Phage-derived products, namely lysins, or peptidoglycan-hydrolyzing enzymes, can be an effective weapon against antibiotic-resistant bacteria. Whereas in Gram-positive bacteria, lysis from without is facilitated by the exposed peptidoglycan layer, this is not possible in the outer membrane-protected peptidoglycan of Gram-negative bacteria. Here, we suggest the encapsulation of lysins in liposomes as a delivery system against Gram-negative bacteria, using the model of P. aeruginosa. Bioinformatic analysis allowed for the identification of 38 distinct complete prophages within 66 P. aeruginosa genomes (16 of which newly sequenced) and led to the identification of 19 lysins of diverse sequence and function, 5 of which proceeded to wet lab analysis. The four purifiable lysins showed hydrolytic activity against Gram-positive bacterial lawns and, on zymogram assays, constituted of autoclaved P. aeruginosa cells. Additionally, lysins Pa7 and Pa119 combined with an outer membrane permeabilizer showed activity against P. aeruginosa cells. These two lysins were successfully encapsulated in DPPC:DOPE:CHEMS (molar ratio 4:4:2) liposomes with an average encapsulation efficiency of 33.33% and 32.30%, respectively. The application of the encapsulated lysins to the model P. aeruginosa led to a reduction in cell viability and resulted in cell lysis as observed in MTT cell viability assays and electron microscopy. In sum, we report here that prophages may be important sources of new enzybiotics, with prophage lysins showing high diversity and activity. In addition, these enzybiotics following their incorporation in liposomes were able to potentiate their antibacterial effect against the Gram-negative bacteria P. aeruginosa, used as the model.


Assuntos
Prófagos , Pseudomonas aeruginosa , Animais , Antibacterianos/farmacologia , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/metabolismo , Humanos , Lipossomos , Peptidoglicano/metabolismo , Prófagos/metabolismo , Pseudomonas aeruginosa/metabolismo
6.
Sci Rep ; 12(1): 13791, 2022 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-35963896

RESUMO

Klebsiella pneumoniae (Kp) bacteria are an increasing threat to public health and represent one of the most concerning pathogens involved in life-threatening infections and antimicrobial resistance (AMR). To understand the epidemiology of AMR of Kp in Portugal, we analysed whole genome sequencing, susceptibility testing and other meta data on 509 isolates collected nationwide from 16 hospitals and environmental settings between years 1980 and 2019. Predominant sequence types (STs) included ST15 (n = 161, 32%), ST147 (n = 36, 7%), ST14 (n = 26, 5%) or ST13 (n = 26, 5%), while 31% of isolates belonged to STs with fewer than 10 isolates. AMR testing revealed widespread resistance to aminoglycosides, fluoroquinolones, cephalosporins and carbapenems. The most common carbapenemase gene was blaKPC-3. Whilst the distribution of AMR linked plasmids appears uncorrelated with ST, their frequency has changed over time. Before year 2010, the dominant plasmid group was associated with the extended spectrum beta-lactamase gene blaCTX-M-15, but this group appears to have been displaced by another carrying the blaKPC-3 gene. Co-carriage of blaCTX-M and blaKPC-3 was uncommon. Our results from the largest genomics study of Kp in Portugal highlight the active transmission of strains with AMR genes and provide a baseline set of variants for future resistance monitoring and epidemiological studies.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana/genética , Genômica , Hospitais , Humanos , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia , Portugal/epidemiologia
7.
Food Res Int ; 157: 111362, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761624

RESUMO

The quality evaluation and physicochemical parameters assessment of Portuguese monofloral honeys were performed. Fifty-one monofloral honeys were collected from several regions from mainland Portugal, and from the Azores islands, producer labelled as carob tree (n = 5), chestnut (n = 2), eucalyptus (n = 5), bell heather (n = 6), incense (n = 4), lavender (n = 8), orange (n = 9), rape (n = 2), raspberry (n = 2), rosemary (n = 1), sunflower (n = 3), and strawberry tree (n = 4). Pollen analysis and microbiological safety were evaluated, and the parameters such as colour index, moisture content, electrical conductivity, hydroxymethylfurfural, pH, free and total acidity, diastase activity, proline, and sugar profile were assessed for physicochemical characterization, in all 51 monofloral honeys. After melissopalynological examination, the honeys were either confirmed as monofloral, or classified as multifloral with predominance of a specific pollen type or multifloral. Microbiological analysis showed that honeys were safe for human consumption. Pairwise comparisons of physicochemical parameters, using only honey types with n ≥ 3, revealed significant differences between honey types. Despite some homogeneity in sugar profile among honeys, eucalyptus honey was significantly different in glucose, maltose and maltulose content compared to incense, orange and sunflower honeys, and also exhibited a higher isomaltose amount compared to all analyzed honeys. Electrical conductivity, colour index, free and total acidity, and diastase activity showed significant differences between the analyzed honeys, indicating that these parameters may provide an additional tool in monofloral honey identification.


Assuntos
Eucalyptus , Mel , Amilases , Eucalyptus/química , Glucose/análise , Mel/análise , Pólen/química , Portugal
8.
Int J Antimicrob Agents ; 59(6): 106581, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35378228

RESUMO

The emergence of carbapenemase-producing Klebsiella pneumoniae strains has triggered the use of old antibiotics such as colistin. This is driving the emergence of colistin resistance in multidrug-resistant strains that underlie life-threatening infections. This study analyses the mutational diversity of 22 genes associated with colistin resistance in 140 K. pneumoniae clinical isolates integrated in a high-resolution phylogenetic scenario. Colistin susceptibility was accessed by broth microdilution. A total of 98 isolates were susceptible and 16 were resistant, 10 of which were carbapenemase producers. Across the 22 genes examined, 171 non-synonymous mutations and 9 mutations associated with promoter regions were found. Eighty-five isolates had a truncation and/or deletion in at least one of the 22 genes. However, only seven mutations, the complete deletion of mgrB or insertion sequence (IS)-mediated disruption, were exclusively observed in resistant isolates. Four of these (mgrBIle13fs, pmrBGly207Asp, phoQHis339Asp and ramAIle28Met) comprised novel mutations that are potentially involved in colistin resistance. One strain bore a ISEcp1-blaCTX-M-15::mgrB disruption, underlying co-resistance to third-generation cephalosporins and colistin. Moreover, the high-resolution phylogenetic context shows that most of the mutational diversity spans multiple phylogenetic clades, and most of the mutations previously associated with colistin resistance are clade-associated and present in susceptible isolates, showing no correlation with colistin resistance. In conclusion, the present study provides relevant data on the genetic background of genes involved with colistin resistance deeply rooted across monophyletic groups and provides a better understanding of the genes and mutations involved in colistin resistance.


Assuntos
Colistina , Infecções por Klebsiella , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Humanos , Infecções por Klebsiella/tratamento farmacológico , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Mutação , Filogenia , beta-Lactamases/genética
9.
Antibiotics (Basel) ; 11(2)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35203770

RESUMO

The combination of ceftazidime/avibactam (CZA) is a novel ß-lactam/ß-lactamase inhibitor with activity against Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacterales. Emerging cases caused by CZA-resistant strains that produce variants of KPC genes have already been reported worldwide. However, to the best of our knowledge, no CZA-resistant strains were reported in Portugal. In September 2019, a K. pneumoniae CZA-resistant strain was collected from ascitic fluid at a surgery ward of a tertiary University Hospital Center in Lisboa, Portugal. The strain was resistant to ceftazidime/avibactam, as well as to ceftazidime, cefoxitin, gentamicin, amoxicillin/clavulanic acid, and ertapenem, being susceptible to imipenem and tigecycline. A hypermucoviscosity phenotype was confirmed by string test. Whole-genome sequencing (WGS) analysis revealed the presence of an ST13 KPC70-producing K. pneumoniae, a KPC-3 variant, differing in two amino-acid substitutions (D179Y and T263A). The D179Y mutation in the KPC Ω-loop region is the most common amino-acid substitution in KPC-2 and KPC-3, further leading to CZA resistance. The second mutation causes a KPC-70 variant in which threonine replaces alanine (T263A). The CZA-resistant strain showed the capsular locus KL3 and antigen locus O1v2. Other important virulence factors were identified: fimbrial adhesins type 1 and type 3, as well as the cluster of iron uptake systems aerobactin, enterobactin, salmochelin, and yersiniabactin included in integrative conjugative element 10 (ICEKp10) with the genotoxin colibactin cluster. Herein, we report the molecular characterization of the first hypervirulent CZA-resistant ST13 KPC-70-producing K. pneumoniae strain in Portugal. The emergence of CZA-resistant strains might pose a serious threat to public health and suggests an urgent need for enhanced clinical awareness and epidemiologic surveillance.

10.
Microorganisms ; 10(2)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35208703

RESUMO

New Delhi metallo-ß-lactamase (NDM) carbapenemase has been considered a global threat due to its worldwide widespread in recent years. In Portugal, a very low number of infections with NDM-producing Enterobacterales has been reported. A total of 52 strains from 40 patients and 1 environmental sample isolated during COVID-19 pandemic were included in this study. Wholegenome sequencing (WGS) was performed on 20 carbapenemase-producing strains, including 17 NDM-1-producing Klebsiella pneumoniae ST11-KL105 lineage strains, one NDM-1-producing Escherichia coli ST58 strain and one KPC-3-producing K. pneumoniae ST147 strain, recovered from a total of 19 patients. Of interest, also one NDM-1-producing K. pneumoniae ST11-KL105 was collected from the hospital environment. Genome-wide phylogenetic analysis revealed an ongoing dissemination of NDM-1-producing K. pneumoniae ST11 strains (n = 18) with the same genetic features seen across multiple wards. Furthermore, the ST58 E. coli strain, collected from a patient rectal swab that was also colonised with a K. pneumoniae strain, also showed the IncFIA plasmid replicon and the blaNDM-1 gene (preceded by IS30 and followed by genes bleMBL, trpF, dsbC, cutA, groES and groEL). The blaNDM-1 is part of Tn125-like identical to those reported in Poland, Italy and India. The blaKPC-3 K. pneumoniae ST147-KL64 strain has the genetic environment Tn4401d isoform. In conclusion, herein we report the molecular epidemiology, resistome, virulome and mobilome of the first NDM-1 carbapenemase outbreak caused by K. pneumoniae ST11-KL105 lineage during the COVID-19 pandemic in Portugal. Moreover, the outbreak strains characterised included seventeen different patients (infected and colonised) and one environmental sample which also emphasises the role of commensal and hospital environment strains in the dissemination of the outbreak.

11.
Microorganisms ; 10(2)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35208876

RESUMO

The carbapenem-resistant Enterobacterales (CRE) strains have been identified by the World Health Organization as critical priority pathogens in research and development of diagnostics, treatments, and vaccines. However, recent molecular information about carbapenem-resistant K. pneumoniae (CRK) epidemiology in Portugal is still scarce. Thus, this study aimed to provide the molecular epidemiology, resistome, and virulome of CRK clinical strains recovered from a tertiary care hospital centre (2019-2021) using polymerase chain reaction (PCR) and the advanced molecular technique whole-genome sequencing (WGS). PCR amplification of carbapenemase genes was performed in 437 carbapenem-resistant K. pneumoniae strains. The most frequent carbapenemases were: KPC-3 (42%), followed by OXA-181 (20%), GES-5 (0.2%), and NDM-1 (0.2%). Additionally, 10 strains (2%) coproduced KPC-3 and OXA-181, and 1 strain coproduced KPC-3 and OXA-48 (0.2%). The genomic population structure of 68 strains characterized by WGS demonstrated the ongoing dissemination of four main high-risk clones: ST13, ST17, ST147, and ST307, while no clones belonging to the European predominant clonal groups (CG15 and CG258) were found. Moreover, we describe one K. pneumoniae ST39-KL62 that coproduced the NDM-1 carbapenemase and the extended-spectrum beta-lactamase CTX-M-15, and one K. pneumoniae ST29-KL54 GES-5 and BEL-1 coproducer. Furthermore, a high prevalence of iron siderophores were present in all CRK strains, with several strains presenting both colibactin and the hypermucoviscosity phenotype. Thus, the data presented here highlight an uncommon molecular epidemiology pattern in Portugal when compared with most European countries, further supporting the emergence and dissemination of nonclonal group 258 hypervirulent multidrug high-risk clones and the need to promote in-depth hospital molecular surveillance studies.

12.
Diagnostics (Basel) ; 11(12)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34943590

RESUMO

The emergence of multidrug resistant Gram-negative pathogens, particularly carbapenemase producers, has forced clinicians to use last line antibiotics, such as colistin. Since colistin susceptibility testing presents several challenges, this study aimed at evaluating the performance of two alternative susceptibility methods for Klebsiella pneumoniae, namely, agar dilution (AD) and MIC test strips (MTS). These approaches were compared with the reference method, broth microdilution (BMD), and provide a quantitative description for the "skipped well" (SW) phenomenon. Colistin susceptibility was evaluated by BMD and AD in parallel and triplicate, using 141 K. pneumoniae clinical isolates while MTS performance was evaluated only for a subset (n = 121). Minimum inhibitory concentration analysis revealed that a substantial part (n = 26/141; 18.4%) of the initial isolates was deemed undetermined by BMD due to the following: discordance between replicates (1.4%); presence of multiple SWs (7.8%); and the combination of both events (9.2%). Both AD and MTS revealed a high number of false-susceptible strains ("very major errors"), 37.5% and 68.8%, respectively. However, AD agreement indices were reasonably high (EA = 71.3% and CA = 94.8%). For MTS these indices were lower, in particular EA (EA = 41.7% and CA = 89.6), but the approach enabled the detection of distinct sub-populations for four isolates. In conclusion, this study provides the most comprehensive study on the performance of AD and MTS for colistin susceptibility testing in K. pneumoniae, highlighting its limitations, and stressing the importance of sample size and composition. Further, this study highlights the impact of the SW phenomenon associated with the BMD method for K. pneumoniae.

13.
Microorganisms ; 9(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34835377

RESUMO

Klebsiella pneumoniae is an increasing threat to public health and represents one of the most concerning pathogens involved in life-threatening infections. The resistant and virulence determinants are coded by mobile genetic elements which can easily spread between bacteria populations and co-evolve with its genomic host. In this study, we present the full genomic sequences, insertion sites and phylogenetic analysis of 150 prophages found in 40 K. pneumoniae clinical isolates obtained from an outbreak in a Portuguese hospital. All strains harbored at least one prophage and we identified 104 intact prophages (69.3%). The prophage size ranges from 29.7 to 50.6 kbp, coding between 32 and 78 putative genes. The prophage GC content is 51.2%, lower than the average GC content of 57.1% in K. pneumoniae. Complete prophages were classified into three families in the order Caudolovirales: Myoviridae (59.6%), Siphoviridae (38.5%) and Podoviridae (1.9%). In addition, an alignment and phylogenetic analysis revealed nine distinct clusters. Evidence of recombination was detected within the genome of some prophages but, in most cases, proteins involved in viral structure, transcription, replication and regulation (lysogenic/lysis) were maintained. These results support the knowledge that prophages are diverse and widely disseminated in K. pneumoniae genomes, contributing to the evolution of this species and conferring additional phenotypes. Moreover, we identified K. pneumoniae prophages in a set of endolysin genes, which were found to code for proteins with lysozyme activity, cleaving the ß-1,4 linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues in the peptidoglycan network and thus representing genes with the potential for lysin phage therapy.

14.
Animals (Basel) ; 11(10)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34679926

RESUMO

This study aimed to characterize the susceptibility profile to antibiotics and biofilm formation of Gram-negative bacterial isolates obtained from the oral cavity of the black-and-white ruffed lemur (Varecia variegata). From eight individuals from a zoo located in Portugal, samples of the oral microbiota were collected with sterile swabs and then placed in closed tubes with a transport medium. Culture was carried out for media of Gram-negative bacteria. Twenty-two isolates were obtained and subjected to susceptibility tests to twenty-five antimicrobial agents belonging to seven different classes. All tested isolates demonstrated resistance to, at least, one antibiotic, and it was possible to observe multidrug resistance in 11 of the 22 isolates (50%). It should be noted that an isolate showed phenotypic resistance to imipenem, an antibiotic for exclusive use in a hospital environment. All the isolates showed an increasing ability of biofilm formation over time. The obtained results show that wild mammals in captivity could be reservoirs and potential sources of multi-resistant pathogens. In view of this fact and considering the One Health concept, it will be advisable to establish local monitoring programs worldwide that benefit and protect human, animal and environmental health.

15.
Diagnostics (Basel) ; 11(7)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202395

RESUMO

Klebsiella pneumoniae is a rod-shaped, encapsulated, Gram-negative bacteria associated with multiple nosocomial infections. Multidrug-resistant (MDR) K. pneumoniae strains have been increasing and the therapeutic options are increasingly limited. Colistin is a long-used, polycationic, heptapeptide that has regained attention due to its activity against Gram-negative bacteria, including the MDR K. pneumoniae strains. However, this antibiotic has a complex mode of action that is still under research along with numerous side-effects. The acquisition of colistin resistance is mainly associated with alteration of lipid A net charge through the addition of cationic groups synthesized by the gene products of a multi-genic regulatory network. Besides mutations in these chromosomal genes, colistin resistance can also be achieved through the acquisition of plasmid-encoded genes. Nevertheless, the diversity of molecular markers for colistin resistance along with some adverse colistin properties compromises the reliability of colistin-resistance monitorization methods. The present review is focused on the colistin action and molecular resistance mechanisms, along with specific limitations on drug susceptibility testing for K. pneumoniae.

16.
Microorganisms ; 9(3)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799747

RESUMO

Wastewater treatment plants (WWTPs) are significant reservoirs of bacterial resistance. This work aims to identify the determinants of resistance produced by Gram-negative bacteria in the influent and effluent of two WWTPs in Portugal. A total of 96 wastewater samples were obtained between 2016 and 2019. The numbers of total aerobic and fecal contamination bacteria were evaluated, and genomic features were searched by polymerase chain reaction (PCR) and Next-Generation Sequencing (NGS). Enterobacteriaceae corresponded to 78.6% (n = 161) of the 205 isolates identified by 16sRNA. The most frequent isolates were Escherichia spp. (57.1%, n = 117), followed by Aeromonas spp. (16.1%, n = 33) and Klebsiella spp. (12.7%, n = 26). The remaining 29 isolates (14.1%) were distributed across 10 different genera. Among the 183 resistant genes detected, 54 isolates produced extended spectrum ß-lactamases (ESBL), of which blaCTX-M-15 was predominant (37 isolates; 68.5%). A KPC-3 carbapenemase-producing K. oxytoca was identified (n = 1), with blaKPC-3 included in a transposon Tn4401 isoform b. A higher number of virulence genes (VG) (19 genes) was found in the E. coli 5301 (O25b-ST131-B2) isolate compared with a commensal E. coli 5281 (O25b-ST410-A) (six genes). Both shared five VG [Enterobactin; Aerobactin, CFA/1 (clade α); Type1 (clade γ1); Type IV]. In conclusion, this work highlights the role of relevant clinical bacteria in WWTPs, such as KPC-3-producing K. oxytoca, and, for the first time, a CTX-M-15-producing Ochromobactrum intermedium, a human opportunistic pathogen, and a SED-1-producing Citrobacter farmeri, an uncommon CTX-M-type extended-spectrum beta-lactamase.

17.
Sci Rep ; 11(1): 6491, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33753763

RESUMO

Klebsiella pneumoniae is an important nosocomial infectious agent with a high antimicrobial resistance (AMR) burden. The application of long read sequencing technologies is providing insights into bacterial chromosomal and putative extra-chromosomal genetic elements (PEGEs) associated with AMR, but also epigenetic DNA methylation, which is thought to play a role in cleavage of foreign DNA and expression regulation. Here, we apply the PacBio sequencing platform to eight Portuguese hospital isolates, including one carbapenemase producing isolate, to identify methylation motifs. The resulting assembled chromosomes were between 5.2 and 5.5Mbp in length, and twenty-six PEGEs were found. Four of our eight samples carry blaCTX-M-15, a dominant Extended Spectrum Beta Lactamase in Europe. We identified methylation motifs that control Restriction-Modification systems, including GATC of the DNA adenine methylase (Dam), which methylates N6-methyladenine (m6A) across all our K. pneumoniae assemblies. There was a consistent lack of methylation by Dam of the GATC motif downstream of two genes: fosA, a locus associated with low level fosfomycin resistance, and tnpB transposase on IncFIB(K) plasmids. Overall, we have constructed eight high quality reference genomes of K. pneumoniae, with insights into horizontal gene transfer and methylation m6A motifs.


Assuntos
Metilação de DNA , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , Proteínas de Bactérias/genética , Metilases de Modificação do DNA/genética , Epigenoma , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/patogenicidade , Resistência beta-Lactâmica
18.
Microorganisms ; 8(12)2020 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-33322205

RESUMO

The evolutionary epidemiology, resistome, virulome and mobilome of thirty-one multidrug resistant Klebsiella pneumoniae clinical isolates from the northern Vila Real region of Portugal were characterized using whole-genome sequencing and bioinformatic analysis. The genomic population structure was dominated by two main sequence types (STs): ST147 (n = 17; 54.8%) and ST15 (n = 6; 19.4%) comprising four distinct genomic clusters. Two main carbapenemase coding genes were detected (blaKPC-3 and blaOXA-48) along with additional extended-spectrum ß-lactamase coding loci (blaCTX-M-15, blaSHV-12, blaSHV-27, and blaSHV-187). Moreover, whole genome sequencing enabled the identification of one Klebsiella variicola KPC-3 producer isolate previously misidentified as K. pneumoniae, which in addition to the blaKPC-3 carbapenemase gene, bore the chromosomal broad spectrum ß-lactamase blaLEN-2 coding gene, oqxAB and fosA resistance loci. The blaKPC-3 genes were located in a Tn4401b transposon (K. variicolan = 1; K. pneumoniaen = 2) and Tn4401d isoform (K. pneumoniaen = 28). Overall, our work describes the first report of a blaKPC-3 producing K. variicola, as well as the detection of this species during infection control measures in surveillance cultures from infected patients. It also highlights the importance of additional control measures to overcome the clonal dissemination of carbapenemase producing clones.

19.
Microorganisms ; 7(5)2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31100810

RESUMO

Klebsiella pneumoniae is a clinically relevant pathogen and a frequent cause of hospital-acquired (HA) and community-acquired (CA) urinary tract infections (UTI). The increased resistance of this pathogen is leading to limited therapeutic options. To investigate the epidemiology, virulence, and antibiotic resistance profile of K. pneumoniae in urinary tract infections, we conducted a multicenter retrospective study for a total of 81 isolates (50 CA-UTI and 31 HA-UTI) in Portugal. The detection and characterization of resistance and virulence determinants were performed by molecular methods (PCR, PCR-based replicon typing, and multilocus sequence typing (MLST)). Out of 50 CA-UTI isolates, six (12.0%) carried ß-lactamase enzymes, namely blaTEM-156 (n = 2), blaTEM-24 (n = 1), blaSHV-11 (n = 1), blaSHV-33 (n = 1), and blaCTX-M-15 (n = 1). All HA-UTI were extended-spectrum ß-lactamase (ESBL) producers and had a multidrug resistant profile as compared to the CA-UTI isolates, which were mainly resistant to ciprofloxacin, levofloxacin, tigecycline, and fosfomycin. In conclusion, in contrast to community-acquired isolates, there is an overlap between virulence and multidrug resistance for hospital-acquired UTI K. pneumoniae pathogens. The study is the first to report different virulence characteristics for hospital and community K. pneumoniae pathogens, despite the production of ß-lactamase and even with the presence of CTX-M-15 ESBL, a successful international ST15 clone, which were identified in both settings. This highlights that a focus on genomic surveillance should remain a priority in the hospital environment.

20.
Polymers (Basel) ; 11(1)2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30960092

RESUMO

The present study investigated a new approach to treat superficial skin infections by topical application of minocycline hydrochloride (MH) formulated in a novel starch-based Pickering emulsion (ASt-emulsions). The emulsions were fully characterized in terms of efficacy, as well as in vitro release and permeation studies. The emulsions provided a prolonged MH release, always above its minimum inhibitory concentration against Staphylococcus aureus, although the drug did not permeate through the entire skin layer. The in vitro antibacterial activity of MHASt-emulsions against S. aureus was confirmed and their therapeutic efficacy was assessed using an in vitro skin-adapted agar diffusion test. In vivo antibacterial activity, evaluated using the tape-stripping infection model in mice, showed the topical administration of MH was effective against superficial infections caused by S. aureus. This study supports the potential of ASt-emulsions as promising platforms for topical antibiotic delivery, contributing to a new perspective on the treatment of superficial bacterial infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...