Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Comp Physiol B ; 187(1): 235-252, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27573204

RESUMO

The processes of lipid deposition and utilization, via the gene leptin (Lep), are poorly understood in taxa with varying degrees of adipose storage. This study examines how these systems may have adapted in marine aquatic environments inhabited by cetaceans. Bowhead (Balaena mysticetus) and beluga whales (Delphinapterus leucas) are ideal study animals-they possess large subcutaneous adipose stores (blubber) and undergo bi-annual migrations concurrent with variations in food availability. To answer long-standing questions regarding how (or if) energy and lipid utilization adapted to aquatic stressors, we quantified variations in gene transcripts critical to lipid metabolism related to season, age, and blubber depth. We predicted leptin tertiary structure conservation and assessed inter-specific variations in Lep transcript numbers between bowheads and other mammals. Our study is the first to identify seasonal and age-related variations in Lep and lipolysis in these cetaceans. While Lep transcripts and protein oscillate with season in adult bowheads reminiscent of hibernating mammals, transcript levels reach up to 10 times higher in bowheads than any other mammal. Data from immature bowheads are consistent with the hypothesis that short baleen inhibits efficient feeding. Lipolysis transcripts also indicate young Fall bowheads and those sampled during Spring months limit energy utilization. These novel data from rarely examined species expand the existing knowledge and offer unique insight into how the regulation of Lep and lipolysis has adapted to permit seasonal deposition and maintain vital blubber stores.


Assuntos
Tecido Adiposo/metabolismo , Beluga/fisiologia , Baleia Franca/fisiologia , Metabolismo dos Lipídeos , Envelhecimento/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Regulação da Temperatura Corporal , Feminino , Humanos , Leptina/genética , Leptina/metabolismo , Lipase/genética , Masculino , Camundongos Endogâmicos C57BL , Ratos Long-Evans , Receptores para Leptina/genética , Estações do Ano
2.
J Evol Biol ; 27(10): 2080-95, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25145977

RESUMO

The evolution of hermaphroditism from dioecy is a poorly studied transition. Androdioecy (the coexistence of males and hermaphrodites) has been suggested as an intermediate step in this evolutionary transition or could be a stable reproductive mode. Freshwater crustaceans in the genus Eulimnadia have reproduced via androdioecy for 24+ million years and thus are excellent organisms to test models of the stability of androdioecy. Two related models that allow for the stable maintenance of males and hermaphrodites rely on the counterbalancing of three life history parameters. We tested these models in the field over three field seasons and compared the results to previous laboratory estimates of these three parameters. Male and hermaphroditic ratios within years were not well predicted using either the simpler original model or a version of this model updated to account for differences between hermaphroditic types ('monogenic' and 'amphigenic' hermaphrodites). Using parameter estimates of the previous year to predict the next year's sex ratios revealed a much better fit to the original relative to the updated version of the model. Therefore, counter to expectations, accounting for differences between the two hermaphroditic types did not improve the fit of these models. At the moment, we lack strong evidence that the long-term maintenance of androdioecy in these crustaceans is the result of a balancing of life history parameters; other factors, such as metapopulation dynamics or evolutionary constraints, may better explain the 24+ million year maintenance of androdioecy in clam shrimp.


Assuntos
Evolução Biológica , Decápodes/genética , Organismos Hermafroditas/genética , Modelos Biológicos , Animais , Água Doce , Endogamia , Longevidade , Masculino , Razão de Masculinidade
3.
Peptides ; 38(2): 326-36, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23085324

RESUMO

Leptin is a circulating protein which regulates dietary intake through binding the leptin receptor. Numerous labs have used known structures and mutagenesis to study this binding process in common animal models (human, mouse and rat). Understanding this binding process in other vertebrate species will allow for a better understanding of leptin and leptin receptor function. The binding site between leptin and leptin receptor is highly conserved in mammals as confirmed through sequence alignments mapped onto structures of both leptin and leptin receptor. More variation in this interaction is found in lizard and frog sequences. Using our models, we show that the avian leptin sequences have far less variation in the binding site than does the leptin receptor. This analysis further suggests that avian leptins are artifactual. In fish, gene duplication events have led to the expression of multiple leptin proteins. These multiple leptin proteins have variation in the regions interacting with leptin receptor. In zebrafish and the Japanese rice fish, we propose that leptin A has a higher binding energy than does B. Differing binding energies are evidence of either divergent functions, different binding confirmations, or other protein partners of leptin B.


Assuntos
Leptina/análise , Receptores para Leptina/análise , Animais , Humanos , Modelos Moleculares , Conformação Proteica
4.
J Evol Biol ; 23(5): 1100-6, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20298443

RESUMO

Chromosomes that determine sex are predicted to evolve differently than autosomes: a lack of recombination on one of the two sex chromosomes is predicted to allow an accumulation of deleterious alleles that eventually leads to reduced functionality and potential physical degradation of the nonrecombining chromosome. Because these changes should occur at an elevated evolutionary rate, it is difficult to find appropriate species in which to test these evolutionary predictions. The unique genetic sex-determining mechanism of the crustacean Eulimnadia texana prevents major chromosome degeneration because of expression of both 'proto-sex' (i.e. early stage of development) chromosomes in homozygous form (ZZ and WW). Herein, we exploit this unique genetic system to examine the predicted accumulation of deleterious alleles by comparing both homogametic sexual types to their heterogametic counterpart. We report differences in crossing over in a sex-linked region in the ZW hermaphrodites (approximately 3%) relative to the ZZ males (approximately 21%), indicative of cross-over suppression in the ZW hermaphrodites. Additionally, we report that both ZZ and WW genotypes have reduced fitness relative to ZW hermaphrodites, which is consistent with the prediction of harboured recessive mutations embedded on both the Z and the W chromosomes. These results suggest that the proto-sex chromosomes in E. texana accumulate recessive deleterious alleles. We hypothesize that recessive deleterious alleles of large effect cannot accumulate because of expression in both ZZ and WW individuals, keeping both chromosomes from losing significant function.


Assuntos
Alelos , Decápodes/genética , Evolução Molecular , Aptidão Genética/genética , Cromossomos Sexuais/genética , Animais , Troca Genética/genética , Primers do DNA/genética , Transtornos do Desenvolvimento Sexual , Feminino , Genótipo , Masculino , Repetições de Microssatélites/genética
5.
Mol Biol Evol ; 17(12): 1885-95, 2000 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11110905

RESUMO

A widely held view of land plant relationships places liverworts as the first branch of the land plant tree, whereas some molecular analyses and a cladistic study of morphological characters indicate that hornworts are the earliest land plants. To help resolve this conflict, we used parsimony and likelihood methods to analyze a 6, 095-character data set composed of four genes (chloroplast rbcL and small-subunit rDNA from all three plant genomes) from all major land plant lineages. In all analyses, significant support was obtained for the monophyly of vascular plants, lycophytes, ferns (including PSILOTUM: and EQUISETUM:), seed plants, and angiosperms. Relationships among the three bryophyte lineages were unresolved in parsimony analyses in which all positions were included and weighted equally. However, in parsimony and likelihood analyses in which rbcL third-codon-position transitions were either excluded or downweighted (due to apparent saturation), hornworts were placed as sister to all other land plants, with mosses and liverworts jointly forming the second deepest lineage. Decay analyses and Kishino-Hasegawa tests of the third-position-excluded data set showed significant support for the hornwort-basal topology over several alternative topologies, including the commonly cited liverwort-basal topology. Among the four genes used, mitochondrial small-subunit rDNA showed the lowest homoplasy and alone recovered essentially the same topology as the multigene tree. This molecular phylogeny presents new opportunities to assess paleontological evidence and morphological innovations that occurred during the early evolution of terrestrial plants.


Assuntos
Genes de Plantas , Filogenia , Plantas/classificação , Ribulose-Bifosfato Carboxilase , DNA Mitocondrial , Evolução Molecular , Genes de RNAr , Íntrons , Proteínas de Plantas/genética , Plantas/genética , Plantas/ultraestrutura
7.
Plant Cell Physiol ; 40(4): 361-8, 1999 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10394632

RESUMO

The desiccation-tolerant moss Tortula ruralis [Hedw.] Gaerten., Meyer & Scherb. has both a constitutive protection system and an active rehydration induced recovery mechanism apparently unique to bryophytes. Immediately following rehydration, desiccated T.ruralis gametophytes produce a set of polypeptides whose synthesis is unique to the rehydrated state. We report the construction of a cDNA expression library from the polysomal mRNA of desiccated gametophytes and the single-pass sequencing of randomly selected clones. 152 expressed sequence tags (ESTs) were generated representing more than 60,000 bp of non-redundant DNA sequence. 44 ESTs (29%) demonstrated significant homology to previously identified nucleotide and/or polypeptide sequences, such as ribosomal proteins, desiccation-related peptides, early light-inducible proteins and a V-type ATPase. Analysis of a subset of these homologous ESTs reveals that codon preference in T.ruralis is similar to that of vascular plants, particularly the Magnoliopsida. 108 ESTs (71%) demonstrated no significant homology to deposited sequences and represent a large number of novel plant genes. Analysis of these ESTs will define the range of genes involved in cellular repair and recovery and may provide greater insight to the complex phenotype of vegetative desiccation-tolerance.


Assuntos
Bryopsida/genética , Etiquetas de Sequências Expressas , Genes de Plantas , DNA Complementar/genética , DNA de Plantas/genética , Dessecação , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA de Plantas/genética
8.
Am J Bot ; 86(3): 372-86, 1999 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10077500

RESUMO

Phylogenetic relationships among embryophytes (tracheophytes, mosses, liverworts, and hornworts) were examined using 21 newly generated mitochondrial small-subunit (19S) rDNA sequences. The "core" 19S rDNA contained more phylogenetically informative sites and lower homoplasy than either nuclear 18S or plastid 16S rDNA. Results of phylogenetic analyses using parsimony (MP) and likelihood (ML) were generally congruent. Using MP, two trees were obtained that resolved either liverworts or hornworts as the basal land plant clade. The optimal ML tree showed hornworts as basal. That topology was not statistically different from the two MP trees, thus both appear to be equally viable evolutionary hypotheses. High bootstrap support was obtained for the majority of higher level embryophyte clades named in a recent morphologically based classification, e.g., Tracheophyta, Euphyllophytina, Lycophytina, and Spermatophytata. Strong support was also obtained for the following monophyletic groups: hornworts, liverworts, mosses, lycopsids, leptosporangiate and eusporangiate ferns, gymnosperms and angiosperms. This molecular analysis supported a sister relationship between Equisetum and leptosporangiate ferns and a monophyletic gymnosperms sister to angiosperms. The topologies of deeper clades were affected by taxon inclusion (particularly hornworts) as demonstrated by jackknife analyses. This study represents the first use of mitochondrial 19S rDNA for phylogenetic purposes and it appears well-suited for examining intermediate to deep evolutionary relationships among embryophytes.

9.
Plant Mol Biol ; 34(5): 731-43, 1997 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-9278164

RESUMO

Higher-order structures have been constructed for plastid-encoded small-subunit (SSU, 16S), rRNAs from representatives of seven nonphotosynthetic holoparasitic angiosperm families: Apodanthaceae, Cynomoriaceae, Cytinaceae, Balanophoraceae, Hydnoraceae, Mitrastemonaceae, and Rafflesiaceae. Whereas most pairwise comparisons among angiosperms differ by 2-3% in substitutions, the 16S rRNAs of the holoparasites show an increasingly greater number of mutations: Cynomorium (7.3%), Cytinus (8.0%), Bdallophyton (12.7%), Mitrastema (14.9%), Hydnora (19.4%), Pilostyles (30.4%) and Corynaea (35.9%). Despite this high level of sequence variation, SSU structures constructed for all species except Pilostyles possess the typical complement of 50 helices (that contain numerous compensatory mutations) thereby providing indirect evidence supporting their functionality. Pilostyles, likely with the most unusual plastid 16S rRNA yet documented, lacks four major helices and contains lengthy insertions for four others. Sequences of products generated via RT-PCR show that these structural modifications are present on a mature (transcribed) rRNA. The trend toward increasing numbers of base substitutions in the holoparasites is accompanied by a marked increase in A+U content of the rRNA. This 'A/T drift' phenomenon of rDNA is especially apparent in Corynaea whose SSU rDNA sequence is 72% A+T. A comparison of Cytinus to tobacco showed that substitution rates appear to be dependent upon the composition of neighboring bases. Transversions represented 26% of the mutations when flanking bases were G or C whereas transversions increased to 36% when the flanking bases were A to T. The underlying molecular mechanism associated with these high substitution rates is presently unknown, however, relaxation of selection pressure on ribosome function resulting in altered DNA replication and/or repair systems may be involved.


Assuntos
Plastídeos/química , Plastídeos/genética , RNA de Plantas/química , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , Composição de Bases , Sequência de Bases , Reparo do DNA , Replicação do DNA , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Plastídeos/fisiologia , RNA de Plantas/fisiologia , RNA Ribossômico 16S/fisiologia
10.
Plant Mol Biol ; 34(5): 717-29, 1997 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-9278163

RESUMO

Past work involving the plastid genome (plastome) of holoparasitic plants has been confined to Scrophulariaceae (or Orobanchaceae) which have truncated plastomes owing to loss of photosynthetic and other genes. Nonasterid holoparasites from Balanophoraceae (Corynaea), Hydnoraceae (Hydnora) and Cytinaceae (Cytinus) were tested for the presence of plastid genes and a plastome. Using PCR, plastid 16S rDNA was successfully amplified and sequenced from the above three holoparasites. The sequence of Cytinus showed 121 single base substitutions relative to Nicotiana (8% of the molecule) whereas higher sequence divergence was observed in Hydnora and Corynaea (287 and 513 changes, respectively). Secondary structural models for these 16S rRNAs show that most changes are compensatory, thus suggesting they are functional. Probes constructed for 16S rDNA and for four plastid-encoded ribosomal protein genes (rps2, rps4, rps7 and rpl 16) were used in Southern blots of digested genomic DNA from the three holoparasites. Positive hybridizations were obtained using each of the five probes only for Cytinus. For Smal digests, all plastid gene probes hybridized to a common fragment ca. 20 kb in length in this species. Taken together, these data provide preliminary evidence suggestive of the retention of highly diverged and truncated plastid genome in Cytinus. The greater sequence divergence for 16S rDNA and the negative hybridization results for Hydnora and Corynaea suggests two possibilities: the loss of typically conserved elements of their plastomes or the complete absence of a plastome.


Assuntos
Genoma de Planta , Plastídeos/genética , Sequência de Bases , Sondas de DNA , Genes de Plantas , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Plantas/genética , RNA de Plantas/química , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética
11.
Bioorg Med Chem ; 5(6): 1235-48, 1997 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-9222517

RESUMO

The chemistry of RNA degradation by Fe.bleomycin was studied using two RNA substrates that are modified efficiently at a small number of sites by the antitumor antibiotic. Cleavage of tRNAHis precursor transcript by Fe(II).BLM A2 was shown to require O2; cleavage was also observed when the same substrate was treated with Fe(III).BLM A2 + H2O2. Consistent with earlier observations made for DNA, the extent of tRNAHis precursor cleavage was greater for Fe(II).BLM A5 than for Fe(II).BLM A2; the least cleavage was obtained using Fe(II).BLM demethyl A2. By the use of 32P end labeled tRNAHis precursor transcript that was also 3H labeled within the uracil moieties, it was shown that release of uracil was nearly stoichiometric with tRNA strand scission by Fe(II).BLM A2. Nonetheless, treatment of the tRNAHis with hydrazine following BLM-mediated cleavage indicated formation of a new product that must have derived from a BLM-induced lesion. Also employed for characterization of BLM cleavage of RNA were the octanucleotides CGCTAGCG, C3-ribo-CGCTAGCG and C3-ara-CGCTAGCG. Analysis of the products of cleavage indicates that Fe.BLM is capable of mediating cleavage by abstraction of a H atom either from C-4' H or c-1' H of the chimeric oligonucleotides.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Bleomicina/análogos & derivados , RNA/efeitos dos fármacos , RNA/metabolismo , Bleomicina/química , Bleomicina/farmacologia , Quimera , Conformação de Ácido Nucleico , Oligonucleotídeos/química , Oligonucleotídeos/metabolismo , RNA/química , Precursores de RNA/química , Precursores de RNA/efeitos dos fármacos , Precursores de RNA/metabolismo , RNA de Transferência de Histidina/química , RNA de Transferência de Histidina/efeitos dos fármacos , RNA de Transferência de Histidina/metabolismo
12.
J Mol Evol ; 45(6): 631-9, 1997 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9419240

RESUMO

Mitochondrial small-subunit (19S) rDNA sequences were obtained from 10 angiosperms to further characterize sequence divergence levels and structural variation in this molecule. These sequences were derived from seven holoparasitic (nonphotosynthetic) angiosperms as well as three photosynthetic plants. 19S rRNA is composed of a conservative core region (ca. 1450 nucleotides) as well as two variable regions (V1 and V7). In pairwise comparisons of photosynthetic angiosperms to Glycine, the core 19S rDNA sequences differed by less than 1.4%, thus supporting the observation that variation in mitochondrial rDNA is 3-4 times lower than seen in protein coding and rDNA genes of other subcellular organelles. Sequences representing four distinct lineages of nonasterid holoparasites showed significantly increased numbers of substitutions in their core 19S rDNA sequences (2.3-7.6%), thus paralleling previous findings that showed accelerated rates in nuclear (18S) and plastid (16S) rDNA from the same plants. Relative rate tests confirmed the accelerated nucleotide substitution rates in the holoparasites whereas rates in nonparasitic plants were not significantly increased. Among comparisons of both parasitic and nonparasitic plants, transversions outnumbered transitions, in many cases more than two to one. The core 19S rRNA is conserved in sequence and structure among all nonparasitic angiosperms whereas 19S rRNA from members of holoparasitic Balanophoraceae have unique extensions to the V5 and V6 variable domains. Substitution and insertion/deletion mutations characterized the V1 and V7 regions of the nonasterid holoparasites. The V7 sequence of one holoparasite (Scybalium) contained repeat motifs. The cause of substitution rate increases in the holoparasites does not appear to be a result of RNA editing, hence the underlying molecular mechanism remains to be fully documented.


Assuntos
Magnoliopsida/genética , RNA de Plantas/química , RNA Ribossômico/química , RNA/química , Composição de Bases , Sequência de Bases , Genoma de Planta , Dados de Sequência Molecular , Filogenia , RNA/genética , Edição de RNA , RNA Mitocondrial , RNA de Plantas/genética , RNA Ribossômico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...