Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36834787

RESUMO

The prognosis for patients with relapsed childhood acute lymphoblastic leukaemia (cALL) remains poor. The main reason for treatment failure is drug resistance, most commonly to glucocorticoids (GCs). The molecular differences between prednisolone-sensitive and -resistant lymphoblasts are not well-studied, thereby precluding the development of novel and targeted therapies. Therefore, the aim of this work was to elucidate at least some aspects of the molecular differences between matched pairs of GC-sensitive and -resistant cell lines. To address this, we carried out an integrated transcriptomic and metabolomic analysis, which revealed that lack of response to prednisolone may be underpinned by alterations in oxidative phosphorylation, glycolysis, amino acid, pyruvate and nucleotide biosynthesis, as well as activation of mTORC1 and MYC signalling, which are also known to control cell metabolism. In an attempt to explore the potential therapeutic effect of inhibiting one of the hits from our analysis, we targeted the glutamine-glutamate-α-ketoglutarate axis by three different strategies, all of which impaired mitochondrial respiration and ATP production and induced apoptosis. Thereby, we report that prednisolone resistance may be accompanied by considerable rewiring of transcriptional and biosynthesis programs. Among other druggable targets that were identified in this study, inhibition of glutamine metabolism presents a potential therapeutic approach in GC-sensitive, but more importantly, in GC-resistant cALL cells. Lastly, these findings may be clinically relevant in the context of relapse-in publicly available datasets, we found gene expression patterns suggesting that in vivo drug resistance is characterised by similar metabolic dysregulation to what we found in our in vitro model.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Prednisolona , Humanos , Criança , Prednisolona/farmacologia , Glutamina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Glucocorticoides/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
2.
Vasa ; 51(2): 62-70, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35171039

RESUMO

The biggest challenge in the COVID-19 pandemic besides the spread of the SARS-CoV-2 virus is to reduce mortality rates. As the number of cases continues to rise and new variants, some with at least partial resistance to vaccines, emerge, the need for better understanding of the underlying pathology of the disease and for improved therapeutic strategies grows urgently. The endothelium is a main target of most viral infections in the body. The dysregulation of the normal functions of endothelial cells (ECs) contributes greatly to the thrombo-inflammatory storm and subsequent blood clot associated deaths in COVID-19 patients. Therefore, in this review we emphasize on the importance of ECs in healthy resting state and in inflammation. We summarize the current understanding of SARS-CoV-2 pathogenicity and the key contributions of in vitro cell culture models some of which have established the ACE2 (angiotensin-converting enzyme 2) receptors as the main gates for viral entry in the cell. Lastly, we focus on 3D biofabrication methods for the design of better in vitro models that mimic the host environment including interactions of multiple cell types, simulation of blood flow and real-time viral infections. The development and implementation of such experimental platforms are critical to elucidate host-pathogen interactions and to test new antiviral drugs and vaccines in a controlled, safe, and highly reproducible and predictive manner.


Assuntos
COVID-19 , Células Endoteliais , Endotélio Vascular , Humanos , Inflamação/metabolismo , Pandemias , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...