Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 17867, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857703

RESUMO

The effect of the extract obtained by Ultrasound-Assisted Extraction (UAE) from green macroalga Cladophora glomerata on the germination and early growth of three narrow-leaved lupin varieties (cv. Homer, Jowisz, and Tytan) was examined. The seeds of these varieties came from five growing seasons (2015-2019) and this was their successive propagation stage. In total, 45 groups were tested. Narrow-leaved lupin like other legumes have a beneficial effect on the physical properties and fertility of the soil. Its high nutritive value makes it suitable for the production of valuable fodder. The algal extract, which was screened for the content of active compounds responsible for their biostimulant effect was applied in two concentrations: 10 and 20%. The germination percentage, root, hypocotyl, epicotyl length and chlorophyll content in cotyledons were evaluated at the end of the experiment. The 20% extract stimulated the growth of seedlings of all lupin cultivars better than the 10% application. The Jowisz variety deserves special attention, as it has the longest root system of seedlings.


Assuntos
Lupinus , Sementes , Cotilédone , Plântula , Germinação , Extratos Vegetais/farmacologia
2.
Vet Q ; 42(1): 68-94, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35491930

RESUMO

The application of high doses of mineral feed additives in the form of inorganic salts increases the growth performance of animals, but at the same, due to their low bioavailability, can contaminate the environment. Therefore, there is a need to find a replacement of administering high doses of minerals with an equally effective alternative. The application of lower doses of metal-containing nanoparticles with the same effect on animal production could be a potential solution. In the present review, zinc, silver, copper, gold, selenium, and calcium nanoparticles are discussed as potential feed additives for animals. Production of nanoparticles under laboratory conditions using traditional chemical and physical methods as well as green and sustainable methods - biosynthesis has been described. Special attention has been paid to the biological properties of nanoparticles, as well as their effect on animal health and performance. Nano-minerals supplemented to animal feed (poultry, pigs, ruminants, rabbits) acting as growth-promoting, immune-stimulating and antimicrobial agents have been highlighted. Metal nanoparticles are known to exert a positive effect on animal performance, productivity, carcass traits through blood homeostasis maintenance, intestinal microflora, oxidative damage prevention, enhancement of immune responses, etc. Metal-containing nanoparticles can also be a solution for nutrient deficiencies in animals (higher bioavailability and absorption) and can enrich animal products with microelements like meat, milk, or eggs. Metal-containing nanoparticles are proposed to partially replace inorganic salts as feed additives. However, issues related to their potential toxicity and safety to livestock animals, poultry, humans, and the environment should be carefully investigated.


Assuntos
Nanopartículas Metálicas , Aves Domésticas , Ração Animal/análise , Animais , Gado , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/toxicidade , Minerais , Coelhos , Sais , Suínos
3.
Molecules ; 26(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34834009

RESUMO

The aim of this study was to propose a complete approach for macroalgae biomass valorization into products useful for sustainable agriculture and environmental protection. In the first stage, the effects of macroalgal extracts and ZnO NPs (zinc oxide nanoparticles) on the germination and growth of radish were examined. Macroalgal extract was produced from freshwater macroalga, i.e., Cladophora glomerata by ultrasound assisted extraction (UAE). The extract was used to biosynthesize zinc oxide nanoparticles. In germination tests, extracts and solutions of ZnO NPs were applied on paper substrate before sowing. In the second stage, sorption properties of macroalga, post-extraction residue, and ZnO NPs to absorb Cr(III) ions were examined. In the germination tests, the highest values of hypocotyl length (the edible part of radish), i.e., 3.3 and 2.6 cm were obtained for 60 and 80% extract (among the tested concentrations 20, 40, 60, 80, and 100%) and 10 and 50 mg/L NPs, respectively. The highest sorption capacity of Cr(III) ions (344.8 mg/g) was obtained by both macroalga and post-extraction residue at a pH of 5 and initial Cr(III) ions concentration of 200 mg/L. This study proves that macroalgae and products based on them can be applied in both sustainable agriculture and wastewater treatment.


Assuntos
Biomassa , Clorófitas/química , Cromo , Hipocótilo/crescimento & desenvolvimento , Nanopartículas/química , Extratos Vegetais/química , Raphanus/crescimento & desenvolvimento , Alga Marinha/química , Óxido de Zinco , Cromo/química , Cromo/metabolismo , Íons/química , Íons/metabolismo , Óxido de Zinco/química , Óxido de Zinco/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...