RESUMO
Mungbean root rot caused by Rhizoctonia bataticola (Taub.) Butler is the most devastating disease inflicting yield loss up to 60%. The use of beneficial antagonist, viz., Streptomyces with diverse antifungal activity and prolific secondary metabolites production, is the ecofriendly and environmentally acceptable alternative to the existing chemical control methods. In this investigation we have identified the promising isolate of Streptomyces sp. which potentially reduced the mungbean root rot. A total of nine mungbean rhizospheric actinobacterial isolates were evaluated for their antagonistic potential against root rot pathogen and growth promoting trait of mungbean. The actinobacterial isolate GgS 48 was shown to be effective in reducing the mycelial growth of R. bataticola by 65.3% in dual culture technique and enhancing the growth of mugbean under in vitro condition. Morphological, biochemical and molecular characterization confirmed the isolate GgS 48 as Streptomyces rameus. The actinobacteria S. rameus GgS 48 exerted antifungal action against R. bataticola by hyphal coiling, which was confirmed under scanning electron microscopy (SEM), and promoted the growth through the production of IAA. It showed positive for the production of siderophore and hydrolytic enzymes, viz., chitinase and protease. The chitinase produced by the GgS 48 was purified and its molecular weight was determined as 40 kDa and it had great potential in reducing the mycelial growth of R. bataticola. The talc-based formulation of S. rameus GgS 48 was found to be promising in suppressing the root rot severity and enhancing the growth and yield attributes of mungbean both under glass house and field conditions.