Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Microb Pathog ; 195: 106870, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39163920

RESUMO

Plants are a treasure trove of biological materials containing a wide range of potential phytochemicals that are target-specific, rapidly biodegradable, and environmentally friendly, with multiple medicinal effects. Unfortunately, the development of resistance to synthetic pesticides and antibiotics led to the discovery of new antibiotics, antioxidants, and biopesticides. This has also led to the creation of new medications that work very well. The current study aimed to prove that ornamental plants contain specialized active substances that are used in several biological processes. Mosquitoes, one of the deadliest animals on the planet, cause millions of fatalities each year by transmitting several human illnesses. Phytochemicals are possible biological agents for controlling pests that are harmful. The potential of leaf extracts of Bougainvillea glabra, Delonix regia, Lantana camara, and Platycladus orientalis against Culex pipiens and microbial agents was evaluated. Acetone extracts had more toxic effects against Cx. pipiens larvae (99.0-100 %, 72 h post-treatment), and the LC50 values were 142.8, 189.5, 95.4, and 71.1 ppm for B. glabra, D. regia, L. camara, and P. orientalis, respectively. Plant extracts tested in this study showed high insecticidal, antimicrobial, and antioxidant potential. GC-MS and HPLC analyses showed a higher number of terpenes, flavonoids, and phenolic compounds. The ADME analysis of element, caryophyllene oxide, caryophyllene, and copaene showed that they were similar to drugs and that they were better absorbed by the body and able to pass through the blood-brain barrier. Our results confirm the ability of ornamental plants to have promising larvicidal and antimicrobial activity and biotechnology.


Assuntos
Culex , Inseticidas , Lantana , Larva , Nyctaginaceae , Extratos Vegetais , Folhas de Planta , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Culex/efeitos dos fármacos , Lantana/química , Inseticidas/farmacologia , Nyctaginaceae/química , Folhas de Planta/química , Larva/efeitos dos fármacos , Metabolômica , Mosquitos Vetores/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Antioxidantes/farmacologia , Febre do Nilo Ocidental
2.
Planta ; 260(2): 43, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958760

RESUMO

MAIN CONCLUSION: Millets' protein studies are lagging behind those of major cereals. Current status and future insights into the investigation of millet proteins are discussed. Millets are important small-seeded cereals majorly grown and consumed by people in Asia and Africa and are considered crops of future food security. Although millets possess excellent climate resilience and nutrient supplementation properties, their research advancements have been lagging behind major cereals. Although considerable genomic resources have been developed in recent years, research on millet proteins and proteomes is currently limited, highlighting a need for further investigation in this area. This review provides the current status of protein research in millets and provides insights to understand protein responses for climate resilience and nutrient supplementation in millets. The reference proteome data is available for sorghum, foxtail millet, and proso millet to date; other millets, such as pearl millet, finger millet, barnyard millet, kodo millet, tef, and browntop millet, do not have any reference proteome data. Many studies were reported on stress-responsive protein identification in foxtail millet, with most studies on the identification of proteins under drought-stress conditions. Pearl millet has a few reports on protein identification under drought and saline stress. Finger millet is the only other millet to have a report on stress-responsive (drought) protein identification in the leaf. For protein localization studies, foxtail millet has a few reports. Sorghum has the highest number of 40 experimentally proven crystal structures, and other millets have fewer or no experimentally proven structures. Further proteomics studies will help dissect the specific proteins involved in climate resilience and nutrient supplementation and aid in breeding better crops to conserve food security.


Assuntos
Milhetes , Proteínas de Plantas , Milhetes/genética , Milhetes/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteoma/metabolismo , Proteômica/métodos , Secas , Estresse Fisiológico , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Sorghum/metabolismo , Sorghum/genética
3.
Int J Biol Macromol ; 273(Pt 2): 133072, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38885861

RESUMO

Plants contain a wide range of potential phytochemicals that are target-specific, and less toxic to human health. The present study aims to investigate the metabolomic profile of Nephrolepis exaltata (L.) Schott and its potential for mosquito control by targeting Glutathione-S-Transferase, focusing on the larvicidal activity against Culex pipiens. Crude extracts (CEs) were prepared using ethanol, ethyl acetate and n-hexane. CEs have been used for assessment of mosquitocidal bioassay. The metabolomic analyses for CEs were characterized for each CE by gas chromatography-mass spectrometry (GC-MS). The most efficient CE with the highest larval mortality and the least LC50 was the hexane CE. Then, alkaline phosphatase (ALP) activity, and glutathione-S-transferase (GST) activity were assessed in larvae treated with the hexane CE. The results demonstrated a decline in protein content, induction of ALP activity, and reduction in GST activity. Finally, molecular docking and dynamic simulation techniques were employed to evaluate the interaction between the hexane phytochemicals and the GST protein. D-(+)-Glucuronic acid, 3TMS derivative and Sebacic acid, 2TMS derivative showed best binding affinities to GST protein pointing to their interference with the enzyme detoxification functions, potentially leading to reduced ability to metabolize insecticides.


Assuntos
Glutationa Transferase , Controle de Mosquitos , Extratos Vegetais , Animais , Culex/efeitos dos fármacos , Culex/enzimologia , Glutationa Transferase/metabolismo , Inseticidas/química , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Metabolômica/métodos , Simulação de Acoplamento Molecular , Controle de Mosquitos/métodos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química
5.
BMC Genomics ; 23(1): 734, 2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36309637

RESUMO

BACKGROUND: Polyamines (PAs) are considered promising biostimulants that have diverse key roles during growth and stress responses in plants. Nevertheless, the molecular basis of these roles by PAs has not been completely realized even now, and unfortunately, the transcriptional analyses of the biosynthesis pathway in various wheat tissues have not been investigated under normal or stress conditions. In this research, the findings of genome-wide analyses of genes implicated in the PAs biosynthesis in wheat (ADC, Arginine decarboxylase; ODC, ornithine decarboxylase; AIH, agmatine iminohydrolase; NPL1, Nitrlase like protein 1; SAMDC, S-adenosylmethionine decarboxylase; SPDS, spermidine synthase; SPMS, spermine synthase and ACL5, thermospermine synthase) are shown. RESULTS: In total, thirty PAs biosynthesis genes were identified. Analysis of gene structure, subcellular compartmentation and promoters were discussed. Furthermore, experimental gene expression analyses in roots, shoot axis, leaves, and spike tissues were investigated in adult wheat plants under control and drought conditions. Results revealed structural similarity within each gene family and revealed the identity of two new motifs that were conserved in SPDS, SPMS and ACL5. Analysis of the promoter elements revealed the incidence of conserved elements (STRE, CAAT-box, TATA-box, and MYB TF) in all promoters and highly conserved CREs in >80% of promoters (G-Box, ABRE, TGACG-motif, CGTCA-motif, as1, and MYC). The results of the quantification of PAs revealed higher levels of putrescine (Put) in the leaves and higher spermidine (Spd) in the other tissues. However, no spermine (Spm) was detected in the roots. Drought stress elevated Put level in the roots and the Spm in the leaves, shoots and roots, while decreased Put in spikes and elevated the total PAs levels in all tissues. Interestingly, PA biosynthesis genes showed tissue-specificity and some homoeologs of the same gene family showed differential gene expression during wheat development. Additionally, gene expression analysis showed that ODC is the Put biosynthesis path under drought stress in roots. CONCLUSION: The information gained by this research offers important insights into the transcriptional regulation of PA biosynthesis in wheat that would result in more successful and consistent plant production.


Assuntos
Secas , Poliaminas , Poliaminas/metabolismo , Triticum/genética , Triticum/metabolismo , Estudo de Associação Genômica Ampla , Espermidina , Putrescina/metabolismo , Expressão Gênica
6.
Curr Protein Pept Sci ; 22(12): 873-889, 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-34751115

RESUMO

Programmed cell death (PCD) is a fundamental genetically controlled process in most organisms. PCD is responsible for the selective elimination of damaged or unwanted cells and organs to maintain cellular homeostasis during the organ's development under normal conditions as well as during defense or adaptation to stressful conditions. PCD pathways have been extensively studied in animals. In plants, studies focusing on understanding the pathways of PCD have advanced significantly. However, the knowledge about the molecular basis of PCD is still very limited. Some PCD pathways that have been discovered in animals are not present in plants or found with a similar form. PCD in plants is developmentally controlled (by endogenous factors) to function in organs development and differentiation as well as environmentally induced (by exogenous stimuli) to help the plant in surviving under stress conditions. Here, we present a review of the role of PCD in plant development and explore different examples of stress-induced PCD as well as highlight the main differences between the plant and animal PCD.


Assuntos
Apoptose , Plantas , Animais , Morte Celular , Homeostase , Desenvolvimento Vegetal/genética , Plantas/genética , Plantas/metabolismo
7.
Physiol Mol Biol Plants ; 26(2): 233-245, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32158131

RESUMO

Polyamines (PAs) are positively charged molecules known to mitigate drought stress; however, little is known about their mechanism of alleviating drought stress. We investigated the effects of PAs exogenously applied as a seed primer and as a foliar spray on the growth, membrane stability (MS), electrolyte leakage (EL), Na+ and K+ cations, reactive oxygen species (ROS), catalase (CAT; EC 1.11.1.6) and guaiacol peroxidase (GPX; EC 1.11.1.7) activity and chloroplast ultra-structure in wheat (Triticum aestivum L.; cv. Sakha-94) under drought stress. Three PA solutions, namely, putrescine, spermine and a mixture of the two (Mix), were each applied at a concentration of 100 µM. Our study demonstrated that the retardation of chlorophyll loss and elevation of Rubisco levels were involved in PA-enhanced growth under drought stress. These relationships were mainly reflected in elevated fresh weight and dry weight in response to foliar spraying with all PA solutions and seed priming with the Mix solution. The elevated growth seemed to be due to increased photosynthetic pigments, protein and Rubisco. In contrast, drought decreased growth, photosynthetic pigments, protein and Rubisco. MS was enhanced by PAs applied as a seed primer or foliar spray, as shown by clear reductions in EL %, malondialdehyde (MDA) content and the Na+/K+ ratio as well as reduced ROS markers and elevated CAT (but not GPX) activity. Further study showed that the Mix solution of PAs, applied either during seed priming or as a foliar spray, improved chloroplast ultra-structure, suggesting that improvements in Rubisco and photosynthetic pigments were involved in PA maintenance of chloroplast stability. Therefore, the present study showed that elevated CAT activity is the main mechanism through which PAs reduce ROS and MDA, thereby improving MS and protecting mesophyll cells structurally and functionally under drought stress in wheat.

8.
J Exp Bot ; 69(20): 4971-4985, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30032264

RESUMO

Plant peroxisomes are important components of cellular antioxidant networks, dealing with ROS generated by multiple metabolic pathways. Peroxisomes respond to environmental and cellular conditions by changing their size, number, and proteomic content. To investigate the role of peroxisomes in response to drought, dehydration and ABA treatment we took an evolutionary and comparative genomics approach. Colonisation of land required evolution of dehydration tolerance in the absence of subsequent anatomical adaptations. Therefore, the model bryophyte Physcomitrella patens, the model dicot Arabidopsis thaliana and wheat (Tricitcum aestivum), a globally important cereal crop were compared. Three sets of genes namely 'PTS1 genes' (a proxy for genes encoding peroxisome targeted proteins), PEX genes (involved in peroxisome biogenesis) and genes involved in plant antioxidant networks were identified in all 3 species and their expression compared under drought (dehydration) and ABA treatment. Genes encoding enzymes of ß-oxidation and gluconeogenesis, antioxidant enzymes including catalase and glutathione reductase and PEX3 and PEX11 isoforms showed conserved up-regulation, and peroxisome proliferation was induced by ABA in moss. Interestingly, expression of some of these genes differed between drought sensitive and resistant genotypes of wheat in line with measured photosynthetic and biochemical differences. These results point to an underappreciated role for peroxisomes in drought response.


Assuntos
Arabidopsis/genética , Bryopsida/genética , Regulação da Expressão Gênica de Plantas/genética , Peroxissomos/metabolismo , Transcrição Gênica , Triticum/genética , Ácido Abscísico/metabolismo , Dessecação , Secas , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
Plant Physiol Biochem ; 118: 438-448, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28743037

RESUMO

Polyamines (PAs) can improve drought stress tolerance in plants; however, very limited information is available on the mechanism of action of exogenous application by different methods under drought stress in wheat. The present study investigates the mechanism through which seed priming and foliar spraying with PAs protect wheat plants from drought stress. 10 days old wheat seedlings were exposed to drought stress by withholding water alone or with 100 µM PAs solutions (putrescine, Put; spermine, Spm; and mixture of Put and Spm for 10 h seed-priming or three foliar sprays during withholding water. Drought stress impaired the wheat growth and altered the osmoprotectants, endogenous PAs levels, PAs biosynthetic genes expression and weight of 1000 grains compared to the corresponding control values. Exogenously applied PAs improved cell water status, accumulated osmoprotectants and PAs and up-regulated PAs biosynthetic genes, ADC, arginine decarboxylase; DHS, deoxyhypusine synthase; ODC, ornithine decarboxylase and SAMDC, S-adenosyl methionine decarboxylase. Put significantly regulate the endogenous PAs by both methods of application, however, Spm and mixture of Put and Spm could positively regulate the endogenous PAs and the biosynthetic gene expression by foliar spraying rather than seed priming. The data provide evidence that maintenance of water economy through stabilized cellular structure is an important strategy of drought tolerance by PAs in wheat.


Assuntos
Poliaminas Biogênicas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Triticum/metabolismo , Poliaminas Biogênicas/biossíntese , Poliaminas Biogênicas/farmacologia , Desidratação/metabolismo
10.
Biochim Biophys Acta ; 1863(5): 850-62, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26408938

RESUMO

Peroxisomes play diverse and important roles in plants. The functions of peroxisomes are dependent upon their steady state protein composition which in turn reflects the balance of formation and turnover of the organelle. Protein import and turnover of constituent peroxisomal proteins are controlled by the state of cell growth and environment. The evolutionary origin of the peroxisome and the role of the endoplasmic reticulum in peroxisome biogenesis are discussed, as informed by studies of the trafficking of peroxisome membrane proteins. The process of matrix protein import in plants and its similarities and differences with peroxisomes in other organisms is presented and discussed in the context of peroxin distribution across the green plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Membrana/metabolismo , Biogênese de Organelas , Peroxissomos/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Animais , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Células Eucarióticas/química , Células Eucarióticas/metabolismo , Regulação da Expressão Gênica , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Peroxinas , Receptor 2 de Sinal de Orientação para Peroxissomos , Peroxissomos/química , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/genética , Proteínas Repressoras/química , Proteínas Repressoras/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais
11.
J Adv Res ; 6(2): 179-88, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25750752

RESUMO

Physiological parameters and expression levels of drought related genes were analyzed in early vegetative stage of two bread wheat cultivars (Sids and Gmiza) differ in drought tolerance capacity. Both cultivars were imposed to gradual water depletion started on day 17 till day 32 after sowing. Sids, the more tolerant cultivar to drought showed higher fresh and dry weights than the drought sensitive genotype, Gmiza. Under water stress, Sids had higher membrane stability index (MSI), lower accumulated H2O2 and higher activity of the antioxidant enzymes; catalase (CAT), guaiacol peroxidase (GPX), ascorbate peroxidase (APX) and superoxide dismutase (SOD) than Gmiza. On the other hand, the differential expression patterns of the genes dhn, wcor and dreb were observed due to water deficit intensity according to cultivar's tolerance to drought. The DNA sequence alignment of dun showed high similarity of about 80-92% identities with other related plants. The most striking overall observed trend was the highly induction in the expression of dun, wcor and dreb in leaves of the tolerant genotype, Sids under severe water stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...