Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 15(6)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38930771

RESUMO

Substrate materials for printed circuit boards must meet ever-increasing requirements to keep up with electronics technology development. Especially in the field of high-frequency applications such as radar and cellular broadcasting, low permittivity and the dielectric loss factor are key material parameters. In this work, the dielectric properties of a high-temperature, thermoplastic PEEK/PEI blend system are investigated at frequencies of 5 and 10 GHz under dried and ambient conditions. This material blend, modified with a suitable filler system, is capable of being used in the laser direct structuring (LDS) process. It is revealed that the degree of crystallinity of neat PEEK has a notable influence on the dielectric properties, as well as the PEEK phase structure in the blend system developed through annealing. This phenomenon can in turn be exploited to minimize permittivity values at 30 to 40 wt.-% PEI in the blend, even taking into account the water uptake present in thermoplastics. The dielectric loss follows a linear mixing rule over the blend range, which proved to be true also for PEEK/PEI LDS compounds.

2.
Phys Rev Lett ; 132(14): 146201, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38640387

RESUMO

A surface photovoltage (SPV) is observed whenever a doped semiconductor with non-negligible band bending is illuminated by light and charge carriers are excited across the band gap. The sign of the SPV depends on the nature of the doping, the amplitude of the SPV increases with the fluence of the light illumination up to a saturation value, which is determined by the doping concentration. We have investigated Si(100) samples with well-characterized doping levels over a wide range of illumination fluences. Surprisingly, the sign of the SPV upon illumination with 532 nm photons reverses for some p-doping concentrations at high fluences. This is a new effect associated with a crossover between electronic excitations in the bulk and at the surface of the semiconductor.

3.
Micromachines (Basel) ; 14(6)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37374806

RESUMO

Microstructuring techniques, such as laser direct writing, enable the integration of microstructures into conventional polymer lens systems and may be used to generate advanced functionality. Hybrid polymer lenses combining multiple functions such as diffraction and refraction in a single component become possible. In this paper, a process chain to enable encapsulated and aligned optical systems with advanced functionality in a cost-efficient way is presented. Within a surface diameter of 30 mm, diffractive optical microstructures are integrated in an optical system based on two conventional polymer lenses. To ensure precise alignment between the lens surfaces and the microstructure, resist-coated ultra-precision-turned brass substrates are structured via laser direct writing, and the resulting master structures with a height of less than 0.002 mm are replicated into metallic nickel plates via electroforming. The functionality of the lens system is demonstrated through the production of a zero refractive element. This approach provides a cost-efficient and highly accurate method for producing complicated optical systems with integrated alignment and advanced functionality.

4.
Cells ; 12(1)2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36611995

RESUMO

Therapy resistance is still a major reason for treatment failure in colorectal cancer (CRC). Previously, we identified the E3 ubiquitin ligase TRIM25 as a novel suppressor of caspase-2 translation which contributes to the apoptosis resistance of CRC cells towards chemotherapeutic drugs. Here, we report the executioner caspase-7 as being a further target of TRIM25. The results from the gain- and loss-of-function approaches and the actinomycin D experiments indicate that TRIM25 attenuates caspase-7 expression mainly through a decrease in mRNA stability. The data from the RNA pulldown assays with immunoprecipitated TRIM25 truncations indicate a direct TRIM25 binding to caspase-7 mRNA, which is mediated by the PRY/SPRY domain, which is also known to be highly relevant for protein-protein interactions. By employing TRIM25 immunoprecipitation, we identified the heterogeneous nuclear ribonucleoprotein H1 (hnRNPH1) as a novel TRIM25 binding protein with a functional impact on caspase-7 mRNA stability. Notably, the interaction of both proteins was highly sensitive to RNase A treatment and again depended on the PRY/SPRY domain, thus indicating an indirect interaction of both proteins which is achieved through a common RNA binding. Ubiquitin affinity chromatography showed that both proteins are targets of ubiquitin modification. Functionally, the ectopic expression of caspase-7 in CRC cells caused an increase in poly ADP-ribose polymerase (PARP) cleavage concomitant with a significant increase in apoptosis. Collectively, the negative regulation of caspase-7 by TRIM25, which is possibly executed by hnRNPH1, implies a novel survival mechanism underlying the chemotherapeutic drug resistance of CRC cells. The targeting of TRIM25 could therefore offer a promising strategy for the reduction in therapy resistance in CRC patients.


Assuntos
Carcinoma , Neoplasias do Colo , Humanos , RNA Mensageiro/genética , Caspase 7 , Ubiquitina-Proteína Ligases/metabolismo , RNA , Neoplasias do Colo/genética , Linhagem Celular Tumoral , Ubiquitina , Apoptose/genética , Proteínas com Motivo Tripartido/genética , Fatores de Transcrição/genética
5.
Rev Sci Instrum ; 93(8): 083905, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050085

RESUMO

A 790-nm-driven high-harmonic generation source with a repetition rate of 6 kHz is combined with a toroidal-grating monochromator and a high-detection-efficiency photoelectron time-of-flight momentum microscope to enable time- and momentum-resolved photoemission spectroscopy over a spectral range of 23.6-45.5 eV with sub-100 fs time resolution. Three-dimensional (3D) Fermi surface mapping is demonstrated on graphene-covered Ir(111) with energy and momentum resolutions of ≲100 meV and ≲0.1 Å-1, respectively. The tabletop experiment sets the stage for measuring the kz-dependent ultrafast dynamics of 3D electronic structure, including band structure, Fermi surface, and carrier dynamics in 3D materials as well as 3D orbital dynamics in molecular layers.

6.
Micromachines (Basel) ; 13(8)2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36014161

RESUMO

The assembly of passive components on flexible electronics is essential for the functionalization of circuits. For this purpose, adhesive bonding technology by isotropic conductive adhesive (ICA) is increasingly used in addition to soldering processes. Nevertheless, a comparative study, especially for bending characterization, is not available. In this paper, soldering and conductive adhesive bonding of 0603 and 0402 components on flexible polyimide substrates is compared using the design of experiments methods (DoE), considering failure for shear strength and bending behavior. Various solder pastes and conductive adhesives are used. Process variation also includes curing and soldering profiles, respectively, amount of adhesive, and final surface metallization. Samples created with conductive adhesive H20E, a large amount of adhesive, and a faster curing profile could achieve the highest shear strength. In the bending characterization using adhesive bonding, samples on immersion silver surface finish withstood more cycles to failure than samples on bare copper surface. In comparison, the samples soldered to bare copper surface finish withstood more cycles to failure than the soldered samples on immersion silver surface finish.

7.
Cell Death Dis ; 13(4): 386, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35444189

RESUMO

Caspase-2 represents an evolutionary conserved caspase, which plays a role in genotoxic stress-induced apoptosis, ageing-related metabolic changes, and in deleting aneuploid cells in tumors. Genetic deletion of caspase-2 leads to increased tumor susceptibility in vivo. The exact downstream signaling mechanism by which caspase-2 accomplishes its specific tumor suppressor functions is not clear. Caspase-2, uniquely among caspases, resides in the nucleus and other cellular compartments. In this study, we identify a nuclear caspase-2 specific substrate, p54nrb, which is selectively cleaved by caspase-2 at D422, leading to disruption of the C-terminal site, the putative DNA binding region of the protein. P54nrb is an RNA and DNA binding protein, which plays a role in RNA editing, transport, and transcriptional regulation of genes. Overexpression of p54nrb is observed in several human tumor types, such as cervix adenocarcinoma, melanoma, and colon carcinoma. In contrast, the loss of p54nrb in tumor cell lines leads to increased cell death susceptibility and striking decrease in tumorigenic potential. By employing high resolution quantitative proteomics, we demonstrate that the loss/cleavage of p54nrb results in altered expression of oncogenic genes, among which the downregulation of the tumorigenic protease cathepsin-Z and the anti-apoptotic gelsolin can be detected universally across three tumor cell types, including adenocarcinoma, melanoma and colon carcinoma. Finally, we demonstrate that p54nrb interacts with cathepsin-Z and gelsolin DNA, but not RNA. Taken together, this study uncovers a so far not understood mechanism of caspase-2 tumor suppressor function in human tumor cells.


Assuntos
Adenocarcinoma , Carcinoma , Proteínas de Ligação a DNA/metabolismo , Melanoma , Proteínas de Ligação a RNA/metabolismo , Apoptose/genética , Caspase 2/genética , Caspase 2/metabolismo , Caspase 3/metabolismo , Caspase 8/metabolismo , Caspase 9/metabolismo , Caspases/metabolismo , Catepsinas/metabolismo , Morte Celular , DNA , Gelsolina/metabolismo , Humanos , RNA/metabolismo , Fatores de Transcrição/metabolismo
8.
Micromachines (Basel) ; 12(8)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34442478

RESUMO

This work presents an embedding process for ultrathin silicon chips in mechanically flexible solder mask resist and their electrical contacting by inkjet printing. Photosensitive solder mask resist is applied by conformal spray coating onto epoxy bonded ultrathin chips with a daisy chain layout. The contact pads are opened by photolithography using UV direct light exposure. Circular and rectangular openings of 90 µm and 130 µm diameter, respectively, edge length are realized. Commercial inks containing nanoparticular silver and gold are inkjet printed to form conductive tracks between daisy chain structures. Different numbers of ink layers are applied. The track resistances are characterized by needle probing. Silver ink shows low resistances only for multiple layers and 90 µm openings, while gold ink exhibits low resistances in the single-digit Ω-range for minimum two printed layers.

9.
Struct Dyn ; 8(4): 044301, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34258326

RESUMO

We present a novel technique to monitor dynamics in interfacial systems through temporal correlations in x-ray photoelectron spectroscopy (XPS) signals. To date, the vast majority of time-resolved x-ray spectroscopy techniques rely on pump-probe schemes, in which the sample is excited out of equilibrium by a pump pulse, and the subsequent dynamics are monitored by probe pulses arriving at a series of well-defined delays relative to the excitation. By definition, this approach is restricted to processes that can either directly or indirectly be initiated by light. It cannot access spontaneous dynamics or the microscopic fluctuations of ensembles in chemical or thermal equilibrium. Enabling this capability requires measurements to be performed in real (laboratory) time with high temporal resolution and, ultimately, without the need for a well-defined trigger event. The time-correlation XPS technique presented here is a first step toward this goal. The correlation-based technique is implemented by extending an existing optical-laser pump/multiple x-ray probe setup by the capability to record the kinetic energy and absolute time of arrival of every detected photoelectron. The method is benchmarked by monitoring energy-dependent, periodic signal modulations in a prototypical time-resolved XPS experiment on photoinduced surface-photovoltage dynamics in silicon, using both conventional pump-probe data acquisition, and the new technique based on laboratory time. The two measurements lead to the same result. The findings provide a critical milestone toward the overarching goal of studying equilibrium dynamics at surfaces and interfaces through time correlation-based XPS measurements.

10.
Micromachines (Basel) ; 12(4)2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33920745

RESUMO

In order to economize injection molded prototypes, additive manufacturing of, e.g., curable plastics based tools, can be employed, which is known as soft tooling. However, one disadvantage of such tools is that the variothermal process, which is needed to produce polymeric parts with small features, can lead to a shorter lifespan of the tooling due to its thermally impaired material properties. Here, a novel concept is proposed, which allows to locally heat the mold cavity via induction to circumvent the thermal impairment of the tooling material. The developed fabrication process consists of additive manufacturing of the tooling, PVD coating the mold cavity with an adhesion promoting layer and a seed layer, electroplating of a ferromagnetic metal layer, and finally patterning the metal layer via laser ablation to enhance the quality and efficiency of the energy transfer as well as the longevity by geometric measures. This process chain is investigated on 2D test specimens to find suitable fabrication parameters, backed by adhesion tests as well as environmental and induction tests. The results of these investigations serve as proof of concept and form the base for the investigation of such induction layers in actual soft tooling cavities.

11.
Nat Commun ; 12(1): 1196, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608532

RESUMO

The ultrafast dynamics of photon-to-charge conversion in an organic light-harvesting system is studied by femtosecond time-resolved X-ray photoemission spectroscopy (TR-XPS) at the free-electron laser FLASH. This novel experimental technique provides site-specific information about charge separation and enables the monitoring of free charge carrier generation dynamics on their natural timescale, here applied to the model donor-acceptor system CuPc:C60. A previously unobserved channel for exciton dissociation into mobile charge carriers is identified, providing the first direct, real-time characterization of the timescale and efficiency of charge generation from low-energy charge-transfer states in an organic heterojunction. The findings give strong support to the emerging realization that charge separation even from energetically disfavored excitonic states is contributing significantly, indicating new options for light harvesting in organic heterojunctions.

12.
Micromachines (Basel) ; 12(1)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33451151

RESUMO

Flexible electronics is a rapidly growing technology for a multitude of applications. Wearables and flexible displays are some application examples. Various technologies and processes are used to produce flexible electronics. An important aspect to be considered when developing these systems is their reliability, especially with regard to repeated bending. In this paper, the frequently used methods for investigating the bending reliability of flexible electronics are presented. This is done to provide an overview of the types of tests that can be performed to investigate the bending reliability. Furthermore, it is shown which devices are developed and optimized to gain more knowledge about the behavior of flexible systems under bending. Both static and dynamic bending test methods are presented.

13.
Int J Mol Sci ; 21(20)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066016

RESUMO

Colorectal cancer (CRC) is one of the most frequently diagnosed tumor in humans and one of the most common causes of cancer-related death worldwide. The pathogenesis of CRC follows a multistage process which together with somatic gene mutations is mainly attributed to the dysregulation of signaling pathways critically involved in the maintenance of homeostasis of epithelial integrity in the intestine. A growing number of studies has highlighted the critical impact of members of the tripartite motif (TRIM) protein family on most types of human malignancies including CRC. In accordance, abundant expression of many TRIM proteins has been observed in CRC tissues and is frequently correlating with poor survival of patients. Notably, some TRIM members can act as tumor suppressors depending on the context and the type of cancer which has been assessed. Mechanistically, most cancer-related TRIMs have a critical impact on cell cycle control, apoptosis, epithelial-mesenchymal transition (EMT), metastasis, and inflammation mainly through directly interfering with diverse oncogenic signaling pathways. In addition, some recent publications have emphasized the emerging role of some TRIM members to act as transcription factors and RNA-stabilizing factors thus adding a further level of complexity to the pleiotropic biological activities of TRIM proteins. The current review focuses on oncogenic signaling processes targeted by different TRIMs and their particular role in the development of CRC. A better understanding of the crosstalk of TRIMs with these signaling pathways relevant for CRC development is an important prerequisite for the validation of TRIM proteins as novel biomarkers and as potential targets of future therapies for CRC.


Assuntos
Carcinoma/metabolismo , Neoplasias Colorretais/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Animais , Apoptose , Carcinoma/patologia , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal , Humanos , Proteínas com Motivo Tripartido/genética
14.
Micromachines (Basel) ; 11(7)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32629981

RESUMO

This paper presents a feasibility study of an automated pick-and-place process for ultrathin chips on a standard automatic assembly machine. So far, scientific research about automated assembly of ultrathin chips, with thicknesses less than 50 µm, is missing, but is necessary for cost-effective, high-quantity production of system-in-foil for applications in narrow spaces or flexible smart health systems applied in biomedical applications. Novel pick-and-place tools for ultrathin chip handling were fabricated and a process for chip detachment from thermal release foil was developed. On this basis, an adhesive bonding process for ultrathin chips with 30 µm thickness was developed and transferred to an automatic assembly machine. Multiple ultrathin chips aligned to each other were automatically placed and transferred onto glass and polyimide foil with a relative placement accuracy of ±25 µm.

15.
Cells ; 8(12)2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842382

RESUMO

Colorectal cancer (CRC) is one of the most common cancers that is characterized by a high mortality due to the strong metastatic potential of the primary tumor and the high rate of therapy resistance. Hereby, evasion of apoptosis is the primary underlying cause of reduced sensitivity of tumor cells to chemo- and radiotherapy. Using RNA affinity chromatography, we identified the tripartite motif-containing protein 25 (TRIM25) as a bona fide caspase-2 mRNA-binding protein in colon carcinoma cells. Loss-of-function and gain-of-function approaches revealed that TRIM25 attenuates the protein levels of caspase-2 without significantly affecting caspase-2 mRNA levels. In addition, experiments with cycloheximide revealed that TRIM25 does not affect the protein stability of caspase-2. Furthermore, silencing of TRIM25 induced a significant redistribution of caspase-2 transcripts from RNP particles to translational active polysomes, indicating that TRIM25 negatively interferes with caspase-2 translation. Functionally, the elevation in caspase-2 upon TRIM25 depletion significantly increased the sensitivity of colorectal cells to drug-induced intrinsic apoptosis as implicated by increased caspase-3 cleavage and cytochrome c release. Importantly, the apoptosis-sensitizing effects by transient TRIM25 knockdown were rescued by concomitant silencing of caspase-2, demonstrating a critical role of caspase-2. Inhibition of caspase-2 by TRIM25 implies a survival mechanism that critically contributes to chemotherapeutic drug resistance in CRC.


Assuntos
Caspase 2/genética , Caspase 2/metabolismo , Neoplasias do Colo/metabolismo , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Antineoplásicos/farmacologia , Caspase 2/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Cicloeximida/farmacologia , Cisteína Endopeptidases/química , Dactinomicina/farmacologia , Doxorrubicina/farmacologia , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Mutação com Perda de Função , Estabilidade Proteica , Sirolimo/farmacologia
16.
Cells ; 8(8)2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31366165

RESUMO

An increased expression and cytoplasmic abundance of the ubiquitous RNA binding protein human antigen R (HuR) is critically implicated in the dysregulated control of post- transcriptional gene expression during colorectal cancer development and is frequently associated with a high grade of malignancy and therapy resistance. Regardless of the fact that HuR elicits a broad cell survival program by increasing the stability of mRNAs coding for prominent anti-apoptotic factors, recent data suggest that HuR is critically involved in the regulation of translation, particularly, in the internal ribosome entry site (IRES) controlled translation of cell death regulatory proteins. Accordingly, data from human colon carcinoma cells revealed that HuR maintains constitutively reduced protein and activity levels of caspase-2 through negative interference with IRES-mediated translation. This review covers recent advances in the understanding of mechanisms underlying HuR's modulatory activity on IRES-triggered translation. With respect to the unique regulatory features of caspase-2 and its multiple roles (e.g., in DNA-damage-induced apoptosis, cell cycle regulation and maintenance of genomic stability), the pathophysiological consequences of negative caspase-2 regulation by HuR and its impact on therapy resistance of colorectal cancers will be discussed in detail. The negative HuR-caspase-2 axis may offer a novel target for tumor sensitizing therapies.


Assuntos
Caspase 2/genética , Neoplasias do Colo/genética , Cisteína Endopeptidases/genética , Resistencia a Medicamentos Antineoplásicos , Proteína Semelhante a ELAV 1/metabolismo , Sobrevivência Celular , Humanos , Biossíntese de Proteínas , Estabilidade de RNA , RNA Mensageiro/química
17.
Faraday Discuss ; 216(0): 414-433, 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31020294

RESUMO

Electronic and lattice contributions to picosecond time-resolved X-ray absorption spectra (trXAS) of CuO at the oxygen K-edge are analyzed by comparing trXAS spectra, recorded using excitation wavelengths of 355 nm and 532 nm, to steady-state, temperature-dependent XAS measurements. The trXAS spectra at pump-probe time-delays ≥150 ps are dominated by lattice heating effects. Insight into the temporal evolution of lattice temperature profiles on timescales up to 100s of nanoseconds after laser excitation are reported, on an absolute temperature scale, with a temporal sensitivity and a spatial selectivity on the order of 10s of picoseconds and 10s of nanometers, respectively, effectively establishing an "ultrafast thermometer". In particular, for the 532 nm experiment at ∼5 mJ cm-2 fluence, both the initial sample temperature and its dynamic evolution are well captured by a one-dimensional thermal energy deposition and diffusion model. The thermal conductivity k = (1.3 ± 0.4) W m-1 K-1 derived from this model is in good agreement with the literature value for CuO powder, kpowder = 1.013 W m-1 K-1. For 355 nm excitation, a quantitative analysis of the experiments is hampered by the large temperature gradients within the probed sample volume owing to the small UV penetration depth. The impact of the findings on mitigating or utilizing photoinduced lattice temperature changes in future X-ray free electron laser (XFEL) experiments is discussed.

18.
Cell Signal ; 52: 1-11, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30145216

RESUMO

The calcineurin inhibitors (CNI) cyclosporine A (CsA) and tacrolimus represent potent immunosuppressive agents frequently used for solid organ transplantation and treatment of autoimmune disorders. Despite of their immense therapeutic benefits, residual fibrosis mainly in the kidney represents a common side effect of long-term therapy with CNI. Regardless of the immunosuppressive action, an increasing body of evidence implicates that a drug-induced increase in TGFß and subsequent activation of TGFß-initiated signaling pathways is closely associated with the development and progression of CNI-induced nephropathy. Mechanistically, an increase in reactive oxygen species (ROS) generation due to drug-induced changes in the intracellular redox homeostasis functions as an important trigger of the profibrotic signaling cascades activated under therapy with CNI. Although, inhibitors of the mechanistic target of rapamycin (mTOR) kinase have firmly been established as alternative compounds with a lower nephrotoxic potential, an activation of fibrogenic signaling cascades has been reported for these drugs as well. This review will comprehensively summarize recent advances in the understanding of profibrotic signaling events modulated by these widely used compounds with a specific focus put on mechanisms occurring independent of their respective immunosuppressive action. Herein, the impact of redox modulation, the activation of canonical TGFß and non-Smad pathways and modulation of autophagy by both classes of immunosuppressive drugs will be highlighted and discussed in a broader perspective. The comprehensive knowledge of profibrotic signaling events specifically accompanying the immunomodulatory activity of these widely used drugs is needed for a reliable benefit-risk assessment under therapeutic regimens.


Assuntos
Calcineurina/metabolismo , Ciclosporina/efeitos adversos , Nefropatias/metabolismo , Sirolimo/efeitos adversos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Tacrolimo/efeitos adversos , Fator de Crescimento Transformador beta/metabolismo , Animais , Inibidores de Calcineurina/efeitos adversos , Fibrose , Humanos , Imunossupressores/efeitos adversos , Rim/patologia , Modelos Animais , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
19.
Oncotarget ; 9(26): 18367-18385, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29719611

RESUMO

HuR plays an important role in tumor cell survival mainly through posttranscriptional upregulation of prominent anti-apoptotic genes. In addition, HuR can inhibit the translation of pro-apoptotic factors as we could previously report for caspase-2. Here, we investigated the mechanisms of caspase-2 suppression by HuR and its contribution to chemotherapeutic drug resistance of colon carcinoma cells. In accordance with the significant drug-induced increase in cytoplasmic HuR abundance, doxorubicin and paclitaxel increased the interaction of cytoplasmic HuR with the 5'untranslated region (5'UTR) of caspase-2 as shown by RNA pull down assay. Experiments with bicistronic reporter genes furthermore indicate the presence of an internal ribosome entry site (IRES) within the caspase-2-5'UTR. Luciferase activity was suppressed either by chemotherapeutic drugs or ectopic expression of HuR. IRES-driven luciferase activity was significantly increased upon siRNA-mediated knockdown of HuR implicating an inhibitory effect of HuR on caspase-2 translation which is further reinforced by chemotherapeutic drugs. Comparison of RNA-binding affinities of recombinant HuR to two fragments of the caspase-2-5'UTR by EMSA revealed a critical HuR-binding site residing between nucleotides 111 and 241 of caspase-2-5'UTR. Mapping of critical RNA binding domains within HuR revealed that a fusion of RNA recognition motif 2 (RRM2) plus the hinge region confers a full caspase-2-5'UTR-binding. Functionally, knockdown of HuR significantly increased the sensitivity of colon cancer cells to drug-induced apoptosis. Importantly, the apoptosis sensitizing effects by HuR knockdown were rescued after silencing of caspase-2. The negative caspase-2 regulation by HuR offers a novel therapeutic target for sensitizing colon carcinoma cells to drug-induced apoptosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...