Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Viruses ; 16(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39205211

RESUMO

The West Nile virus (WNV) subtype Kunjin virus (WNVKUN) is endemic to Australia. Here, we characterized the classical WNVKUN strain, OR393. The original OR393 strain contained two types of viruses: small plaque-forming virus (SP) and large plaque-forming virus (LP). The amino acid residues at positions 156 and 332 in the E protein (E156 and E332) of SP were Ser and Lys (E156S/332K), respectively, whereas those in LP were Phe and Thr (E156F/332T). SP grew slightly faster than LP in vitro. The E protein of SP was N-glycosylated, whereas that of LP was not. Analysis using two recombinant single-mutant LP viruses, rKUNV-LP-EF156S and rKUNV-LP-ET332K, indicated that E156S enlarged plaques formed by LP, but E332K potently reduced them, regardless of the amino acid at E156. rKUNV-LP-EF156S showed significantly higher neuroinvasive ability than LP, SP, and rKUNV-LP-ET332K. Our results indicate that the low-pathogenic classical WNVKUN can easily change its pathogenicity through only a few amino acid substitutions in the E protein. It was also found that Phe at E156 of the rKUNV-LP-ET332K was easily changed to Ser during replication in vitro and in vivo, suggesting that E156S is advantageous for the propagation of WNVKUN in mammalian cells.


Assuntos
Proteínas do Envelope Viral , Ensaio de Placa Viral , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Vírus do Nilo Ocidental/genética , Vírus do Nilo Ocidental/patogenicidade , Vírus do Nilo Ocidental/fisiologia , Camundongos , Febre do Nilo Ocidental/virologia , Virulência , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/química , Aminoácidos/metabolismo , Aminoácidos/genética , Replicação Viral , Chlorocebus aethiops , Substituição de Aminoácidos , Células Vero , Feminino , Humanos , Austrália , Linhagem Celular
2.
Microbiol Immunol ; 68(9): 295-304, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38977291

RESUMO

Spotted fever group (SFG) rickettsia, the causative agent of SFG rickettsiosis, is predominantly carried by ticks, whereas Orientia tsutusgamushi, the causative agent of scrub typhus, is primarily transmitted by chigger mites in Japan. In this study, we attempted to isolate intracellular eubacteria from Leptotrombidium scutellare, a major vector of O. tsutsugamushi; moreover, we isolated an SFG rickettsia using a mosquito-derived cell line. Draft genome sequences of this unique isolate, by applying criteria for species delimitation, classified this isolate as a novel strain, proposed as "Rickettsia kedanie." Further genetic analysis identified conserved virulence factors, and the isolate successfully propagated in mammalian cells, suggesting its ability to cause diseases in humans. The presence of SFG rickettsia in unfed larvae implies potential dual-pathogen carriage and reflects a symbiotic relationship similar to that between the mites and O. tsutsugamushi, indicating possibility of its transovarial transmission from female adults. Furthermore, conserved genomic similarity of the novel isolate to known SFG rickettsia suggests potential multiple hosts, including chiggers and ticks. In the natural environment, ticks, chigger mites, and wild animals may carry new isolates, complicating the infection cycle and increasing the transmission risks to humans. This discovery challenges the conventional association of SFG rickettsia with ticks, emphasizing its implications for research and disease control. However, this study was confined to a particular species of chigger mites and geographic area, underscoring the necessity for additional studies to comprehend the ecological dynamics, host interactions, and health implications linked to this newly identified SFG rickettsia.


Assuntos
Larva , Rickettsia , Rickettsiose do Grupo da Febre Maculosa , Trombiculidae , Animais , Rickettsia/genética , Rickettsia/classificação , Rickettsia/isolamento & purificação , Trombiculidae/microbiologia , Larva/microbiologia , Rickettsiose do Grupo da Febre Maculosa/microbiologia , Genoma Bacteriano , Humanos , Orientia tsutsugamushi/genética , Orientia tsutsugamushi/classificação , Orientia tsutsugamushi/isolamento & purificação , Feminino , Filogenia , Japão , Fatores de Virulência/genética , Tifo por Ácaros/microbiologia , Tifo por Ácaros/transmissão , Linhagem Celular
3.
PLoS Pathog ; 20(7): e1012348, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39008518

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) virus, a tick-borne bunyavirus, causes a severe/fatal disease termed SFTS; however, the viral virulence is not fully understood. The viral non-structural protein, NSs, is the sole known virulence factor. NSs disturbs host innate immune responses and an NSs-mutant SFTS virus causes no disease in an SFTS animal model. The present study reports a novel determinant of viral tropism as well as virulence in animal models, within the glycoprotein (GP) of SFTS virus and an SFTS-related tick-borne bunyavirus. Infection with mutant SFTS viruses lacking the N-linked glycosylation of GP resulted in negligible usage of calcium-dependent lectins in cells, less efficient infection, high susceptibility to a neutralizing antibody, low cytokine production in macrophage-like cells, and reduced virulence in Ifnar-/- mice, when compared with wildtype virus. Three SFTS virus-related bunyaviruses had N-glycosylation motifs at similar positions within their GP and a glycan-deficient mutant of Heartland virus showed in vitro and in vivo phenotypes like those of the SFTS virus. Thus, N-linked glycosylation of viral GP is a novel determinant for the tropism and virulence of SFTS virus and of a related virus. These findings will help us understand the process of severe/fatal diseases caused by tick-borne bunyaviruses.


Assuntos
Glicoproteínas , Phlebovirus , Tropismo Viral , Animais , Glicosilação , Camundongos , Virulência , Phlebovirus/patogenicidade , Phlebovirus/genética , Glicoproteínas/metabolismo , Glicoproteínas/genética , Humanos , Febre Grave com Síndrome de Trombocitopenia/virologia , Camundongos Endogâmicos C57BL , Infecções por Bunyaviridae/virologia , Infecções por Bunyaviridae/metabolismo , Carrapatos/virologia , Camundongos Knockout , Orthobunyavirus/patogenicidade , Orthobunyavirus/genética , Orthobunyavirus/metabolismo
4.
mBio ; 15(7): e0109224, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38847539

RESUMO

Herpes B virus (BV) is a zoonotic virus and belongs to the genus Simplexvius, the same genus as human herpes simplex virus (HSV). BV typically establishes asymptomatic infection in its natural hosts, macaque monkeys. However, in humans, BV infection causes serious neurological diseases and death. As such, BV research can only be conducted in a high containment level facility (i.e., biosafety level [BSL] 4), and the mechanisms of BV entry have not been fully elucidated. In this study, we generated a pseudotyped vesicular stomatitis virus (VSV) expressing BV glycoproteins using G-complemented VSV∆G system, which we named VSV/BVpv. We found that four BV glycoproteins (i.e., gB, gD, gH, and gL) were required for the production of a high-titer VSV/BVpv. Moreover, VSV/BVpv cell entry was dependent on the binding of gD to its cellular receptor nectin-1. Pretreatment of Vero cells with endosomal acidification inhibitors did not affect the VSV/BVpv infection. The result indicated that VSV/BVpv entry occurred by direct fusion with the plasma membrane of Vero cells and suggested that the entry pathway was similar to that of native HSV. Furthermore, we developed a VSV/BVpv-based chemiluminescence reduction neutralization test (CRNT), which detected the neutralization antibodies against BV in macaque plasma samples with high sensitivity and specificity. Crucially, the VSV/BVpv generated in this study can be used under BSL-2 condition to study the initial entry process through gD-nectin-1 interaction and the direct fusion of BV with the plasma membrane of Vero cells.IMPORTANCEHerpes B virus (BV) is a highly pathogenic zoonotic virus against humans. BV belongs to the genus Simplexvius, the same genus as human herpes simplex virus (HSV). By contrast to HSV, cell entry mechanisms of BV are not fully understood. The research procedures to manipulate infectious BV should be conducted in biosafety level (BSL)-4 facilities. As pseudotyped viruses provide a safe viral entry model because of their inability to produce infectious progeny virus, we tried to generate a pseudotyped vesicular stomatitis virus bearing BV glycoproteins (VSV/BVpv) by modification of expression constructs of BV glycoproteins, and successfully obtained VSV/BVpv with a high titer. This study has provided novel information for constructing VSV/BVpv and its usefulness to study BV infection.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Internalização do Vírus , Animais , Anticorpos Neutralizantes/imunologia , Chlorocebus aethiops , Células Vero , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Humanos , Testes de Neutralização , Vesiculovirus/genética , Vesiculovirus/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/metabolismo , Glicoproteínas/genética , Glicoproteínas/imunologia , Glicoproteínas/metabolismo , Vírus da Estomatite Vesicular Indiana/genética , Vírus da Estomatite Vesicular Indiana/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia , Proteínas Virais/metabolismo
5.
Front Microbiol ; 15: 1367672, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550855

RESUMO

Introduction: Severe dengue is thought to be caused by an excessive host immune response. Methods: To study the pathogenesis of severe dengue, we developed a novel model using LysM Cre+Ifnarflox/flox mice carrying depleted Ifnar expression only in subsets of murine myeloid cells. Results: Although dengue virus (DENV) clinical isolates were not virulent in LysM Cre+Ifnarflox/flox mice, mouse-adapted DV1-5P7Sp and DV3P12/08P4Bm, which were obtained by passaging the spleen or bone marrow of mice, demonstrated 100% lethality with severe vascular leakage in the liver and small intestine. DV1-5P7Sp and DV3P12/08P4Bm harbored five and seven amino acid substitutions, respectively. Infection also induced neutrophil infiltration in the small intestine, and increased expression of IL-6 and MMP-8 and blockade of TNF-α signaling protected the mice, as demonstrated in a previous severe dengue mouse model using C57/BL6 mice lacking both IFN-α/ß and IFN-γ receptors. Notably, the new models with DV1-5P7Sp and DV3P12/08P4Bm showed an increased proliferative capacity of the adapted viruses in the thymus and bone marrow. Discussion: These observations suggest that myeloid cell infection is sufficient to trigger cytokine storm-induced vascular leakage. This model can refine the factors involved in the pathology of severe dengue leading to vascular leakage.

6.
NEJM Evid ; 3(3): EVIDoa2300290, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38411447

RESUMO

BACKGROUND: Vaccination against mpox (formerly known as monkeypox), an infectious disease caused by the monkeypox virus (MPXV), is needed to prevent outbreaks and consequent public health concerns. The LC16m8 vaccine, a dried cell-cultured proliferative live attenuated vaccinia virus­based vaccine, was approved in Japan against smallpox and mpox. However, its immunogenicity and efficacy against MPXV have not been fully assessed. We assessed the safety and immunogenicity of LC16m8 against MPXV in healthy adults. METHODS: We conducted a single-arm study that included 50 participants who were followed up for 168 days postvaccination. The primary end point was the neutralizing antibody seroconversion rate against MPXVs, including the Zr599 and Liberia strains, on day 28. The secondary end points included the vaccine "take" (major cutaneous reaction) rate, neutralizing titer kinetics against MPXV and vaccinia virus (LC16m8) strains, and safety outcomes. RESULTS: Seroconversion rates on day 28 were 72% (36 of 50), 70% (35 of 50), and 88% (44 of 50) against the Zr599 strain, the Liberia strain, and LC16m8, respectively. On day 168, seroconversion rates decreased to 30% (15 of 50) against the Zr599 and Liberia strains and to 76% (38 of 50) against LC16m8. The vaccine "take" (broad definition) rate on day 14 was 94% (46 of 49). Adverse events (AEs), including common solicited cutaneous reactions, occurred in 98% (45 of 48) of participants; grade 3 severity AEs occurred in 16% (8 of 50). No deaths, serious AEs, or mpox onset incidences were observed up to day 168. CONCLUSIONS: The LC16m8 vaccine generated neutralizing antibody responses against MPXV in healthy adults. No serious safety concerns occurred with LC16m8 use. (Funded by the Ministry of Health, Labour and Welfare of Japan; Japan Registry of Clinical Trials number, jRCTs031220171.)


Assuntos
Mpox , Vacina Antivariólica , Vacinas , Adulto , Humanos , Anticorpos Neutralizantes , Antígenos Virais
7.
PLoS Pathog ; 20(2): e1011990, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38324589

RESUMO

BACKGROUND: Hofbauer cells (HBCs) and cytotrophoblasts (CTBs) are major cell populations in placenta. The indirect impact of maternal SARS-CoV-2 disease on these cells that are not directly infected has not been extensively studied. Herein, we profiled gene expression in HBCs and CTBs isolated from placentae of recovered pregnant subjects infected with SARS-CoV-2 during all trimesters of pregnancy, placentae from subjects with active infection, SARS-CoV-2 vaccinated subjects, and those who were unexposed to the virus. METHODS: Placentae were collected within 4 h post-delivery and membrane-free tissues were enzymatically digested for the isolation of HBCs and CTBs. RNA extracted from HBCs and CTBs were sequenced using 150bp paired-end reads. Differentially expressed genes (DEGs) were identified by DESeq2 package in R and enriched in GO Biological Processes, KEGG Pathway, Reactome Gene Sets, Hallmark Gene Sets, and Canonical Pathways. Protein-protein interactions among the DEGs were modelled using STRING and BioGrid. RESULTS: Pregnant subjects (n = 30) were recruited and categorized into six groups: infected with SARS-CoV-2 in i) the first (1T, n = 4), ii) second (2T, n = 5), iii) third (3T, n = 5) trimester, iv) tested positive at delivery (Delivery, n = 5), v) never infected (Control, n = 6), and vi) fully mRNA-vaccinated by delivery (Vaccinated, n = 5). Compared to the Control group, gene expression analysis showed that HBCs from infected subjects had significantly altered gene expression profiles, with the 2T group having the highest number of DEGs (1,696), followed by 3T and 1T groups (1,656 and 958 DEGs, respectively). These DEGs were enriched for pathways involved in immune regulation for host defense, including production of cytokines, chemokines, antimicrobial proteins, ribosomal assembly, neutrophil degranulation inflammation, morphogenesis, and cell migration/adhesion. Protein-protein interaction analysis mapped these DEGs with oxidative phosphorylation, translation, extracellular matrix organization, and type I interferon signaling. Only 95, 23, and 8 DEGs were identified in CTBs of 1T, 2T, and 3T groups, respectively. Similarly, 11 and 3 DEGs were identified in CTBs and HBCs of vaccinated subjects, respectively. Reassuringly, mRNA vaccination did not induce an inflammatory response in placental cells. CONCLUSIONS: Our studies demonstrate a significant impact of indirect SARS-CoV-2 infection on gene expression of inner mesenchymal HBCs, with limited effect on lining CTB cells isolated from pregnant subjects infected and recovered from SARS-CoV-2. The pathways associated with these DEGs identify potential targets for therapeutic intervention.


Assuntos
COVID-19 , Placenta , Gravidez , Feminino , Humanos , COVID-19/genética , COVID-19/metabolismo , SARS-CoV-2/genética , Trofoblastos/metabolismo , Transcriptoma , RNA Mensageiro/metabolismo
8.
J Infect Dis ; 229(2): 473-484, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-37786979

RESUMO

Despite intensive characterization of immune responses after COVID-19 infection and vaccination, research examining protective correlates of vertical transmission in pregnancy are limited. Herein, we profiled humoral and cellular characteristics in pregnant women infected or vaccinated at different trimesters and in their corresponding newborns. We noted a significant correlation between spike S1-specific IgG antibody and its RBD-ACE2 blocking activity (receptor-binding domain-human angiotensin-converting enzyme 2) in maternal and cord plasma (P < .001, R > 0.90). Blocking activity of spike S1-specific IgG was significantly higher in pregnant women infected during the third trimester than the first and second trimesters. Elevated levels of 28 cytokines/chemokines, mainly proinflammatory, were noted in maternal plasma with infection at delivery, while cord plasma with maternal infection 2 weeks before delivery exhibited the emergence of anti-inflammatory cytokines. Our data support vertical transmission of protective SARS-CoV-2-specific antibodies. This vertical antibody transmission and the presence of anti-inflammatory cytokines in cord blood may offset adverse outcomes of inflammation in exposed newborns.


Assuntos
COVID-19 , Complicações Infecciosas na Gravidez , Recém-Nascido , Gravidez , Humanos , Feminino , SARS-CoV-2 , Anticorpos Antivirais , Citocinas , Anti-Inflamatórios
9.
Emerg Infect Dis ; 30(1): 177-179, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38086399

RESUMO

Two human patients with Macacine alphaherpesvirus 1 infection were identified in Japan in 2019. Both patients had worked at the same company, which had a macaque facility. The rhesus-genotype B virus genome was detected in cerebrospinal fluid samples from both patients.


Assuntos
Herpesvirus Cercopitecino 1 , Doenças dos Macacos , Animais , Humanos , Japão/epidemiologia , Macaca mulatta , Genótipo
10.
Microbiol Spectr ; 12(1): e0309123, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38095468

RESUMO

IMPORTANCE: Zoonotic infection of humans with herpes B virus (BV) causes severe neurological diseases. Acyclovir (ACV) and ganciclovir (GCV), most frequently used as anti-herpes drugs, are recommended for prophylaxis and therapy in human BV infection. In this study, we examined the property of BV thymidine kinase (TK) against anti-herpes drugs using a recombinant herpes simplex virus type 1 (HSV-1) carrying BV TK gene. We found that HSV-1 carrying BV TK was similarly sensitive to GCV as HSV-1 carrying varicella zoster virus TK. In addition, we demonstrated that BV TK was not mutated in the GCV- and ACV-resistant HSV-1 carrying BV TK, suggesting that ACV- or GCV-resistant BV might be rare during treatment with these antiviral drugs. These data can provide a new insight into the properties of BV TK in terms of the development of drug resistance.


Assuntos
Herpes Simples , Herpesvirus Cercopitecino 1 , Herpesvirus Humano 1 , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Herpesvirus Humano 1/genética , Timidina Quinase/genética , Timidina Quinase/uso terapêutico , Aciclovir/farmacologia , Aciclovir/uso terapêutico , Ganciclovir/farmacologia , Herpes Simples/tratamento farmacológico
11.
J Infect Chemother ; 30(6): 488-493, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38042298

RESUMO

INTRODUCTION: Tecovirimat's application in treating mpox remains under-researched, leaving gaps in clinical and virological understanding. METHODS: The Tecopox study in Japan evaluated the efficacy and safety of tecovirimat in patients with smallpox or mpox, who were divided into oral tecovirimat and control groups. Patients with mpox enrolled between June 28, 2022, and April 30, 2023, were included. Demographic and clinical details along with blood, urine, pharyngeal swab, and skin lesion samples were gathered for viral analysis. A multivariable Tobit regression model was employed to identify factors influencing prolonged viral detection. RESULTS: Nineteen patients were allocated to the tecovirimat group, and no patients were allocated to the control group. The median age was 38.5 years, and all patients were males. Ten patients (52.6%) were infected with human immunodeficiency virus (HIV). Sixteen patients (84.2%) had severe disease. Nine of the 15 patients (60.0%) (four patients withdrew before day 14) had negative PCR results for skin lesion specimens 14 days after inclusion. The mortality rates were 0% on days 14 and 30. No severe adverse events were reported. HIV status and the number of days from symptom onset to tecovirimat administration were associated with lower Ct values (p = 0.027 and p < 0.001, respectively). The median number of days when PCR testing did not detect the mpox virus in each patient was 19.5 days. CONCLUSION: Early tecovirimat administration might reduce viral shedding duration, thereby mitigating infection spread. Moreover, patients infected with HIV showed prolonged viral shedding, increasing the transmission risk compared to those without HIV.

12.
Virology ; 589: 109928, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37949004

RESUMO

Yokose virus (YOKV) is a bat-associated no-known vector flavivirus group member. We investigated the replication ability of YOKV in mosquito-derived C6/36 cells. YOKV grew in C6/36 cells, but its kinetics of YOKV was markedly slower than those of other mosquito-borne flaviviruses. Transmission electron microscopy indicated an extremely small number of viral particles in YOKV-infected C6/36 cells. Mosquito-borne Japanese encephalitis virus prM-E-bearing chimeric YOKV failed to propagate efficiently in C6/36 cells. We isolated C6/36-adapted YOKV and identified nucleotide mutations in the adapted YOKV. Mutations detected in the 3' non-coding region of the adapted YOKV were critical for the enhanced proliferation ability of the virus. Moreover, the growth of the original and adapted YOKV in C6/36 cells was remarkably increased by shifting the culture temperature from 28 to 36 °C. Thus, our results demonstrate the potential of YOKV to propagate in mosquito cells and support its classification as a mosquito-borne flavivirus.


Assuntos
Culicidae , Flavivirus , Animais , Chlorocebus aethiops , Flavivirus/genética , Mosquitos Vetores , Células Vero , Mutação , Replicação Viral
13.
Virus Res ; 340: 199301, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38096954

RESUMO

Heartland virus (HRTV) causes generalized symptoms, severe shock, and multiple organ failure. We previously reported that interferon-α/ß receptor knockout (IFNAR-/-) mice infected intraperitoneally with 1 × 107 tissue culture-infective dose (TCID50) of HRTV died, while those subcutaneously infected with the same dose of HRTV did not. The pathophysiology of IFNAR-/- mice infected with HRTV and the mechanism underlying the difference in disease severity, which depends on HRTV infection route, were analyzed in this study. The liver, spleen, mesenteric and axillary lymph nodes, and gastrointestinal tract of intraperitoneally (I.P.) infected mice had pathological changes; however, subcutaneously (S.C.) infected mice only had pathological changes in the axillary lymph node and gastrointestinal tract. HRTV RNA levels in the mesenteric lymph node, lung, liver, spleen, kidney, stomach, intestine, and blood were significantly higher in I.P. infected mice than those in S.C. infected mice. Chemokine ligand-1 (CXCL-1), tumor necrosis factor (TNF)-α, interleukin (IL)-12, interferon (IFN)-γ, and IL-10 levels in plasma of I.P. infected mice were higher than those of S.C. infected mice. These results indicated that high levels of viral RNA and the induction of inflammatory responses in HRTV-infected IFNAR-/- mice may be associated with disease severity.


Assuntos
Bunyaviridae , Interferon Tipo I , Receptor de Interferon alfa e beta , Animais , Camundongos , Receptor de Interferon alfa e beta/genética , Camundongos Knockout , Interferons , Fígado , Interleucina-12
14.
PLoS Negl Trop Dis ; 17(12): e0011851, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38100536

RESUMO

Nipah virus (NiV) is a highly pathogenic zoonotic virus that causes severe encephalitis and respiratory diseases and has a high mortality rate in humans (>40%). Epidemiological studies on various fruit bat species, which are natural reservoirs of the virus, have shown that NiV is widely distributed throughout Southeast Asia. Therefore, there is an urgent need to develop effective NiV vaccines. In this study, we generated recombinant vaccinia viruses expressing the NiV glycoprotein (G) or fusion (F) protein using the LC16m8 strain, and examined their antigenicity and ability to induce immunity. Neutralizing antibodies against NiV were successfully induced in hamsters inoculated with LC16m8 expressing NiV G or F, and the antibody titers were higher than those induced by other vaccinia virus vectors previously reported to prevent lethal NiV infection. These findings indicate that the LC16m8-based vaccine format has superior features as a proliferative vaccine compared with other poxvirus-based vaccines. Moreover, the data collected over the course of antibody elevation during three rounds of vaccination in hamsters provide an important basis for the clinical use of vaccinia virus-based vaccines against NiV disease. Trial Registration: NCT05398796.


Assuntos
Infecções por Henipavirus , Vírus Nipah , Vacinas Virais , Animais , Cricetinae , Humanos , Vaccinia virus/genética , Vírus Nipah/genética , Glicoproteínas/genética , Glicoproteínas/metabolismo , Vacinas Virais/genética , Vacinas Sintéticas/genética , Infecções por Henipavirus/prevenção & controle
15.
PLoS Negl Trop Dis ; 17(11): e0011743, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37939119

RESUMO

Dengue is a major health problem in tropical and subtropical regions. Some patients develop a severe form of dengue, called dengue hemorrhagic fever, which can be fatal. Severe dengue is associated with a transient increase in vascular permeability. A cytokine storm is thought to be the cause of the vascular leakage. Although there are various research reports on the pathogenic mechanism, the complete pathological process remains poorly understood. We previously reported that dengue virus (DENV) type 3 P12/08 strain caused a lethal systemic infection and severe vascular leakage in interferon (IFN)-α/ß and γ receptor knockout mice (IFN-α/ß/γRKO mice), and that blockade of TNF-α signaling protected mice. Here, we performed transcriptome analysis of liver and small intestine samples collected chronologically from P12/08-infected IFN-α/ß/γRKO mice in the presence/absence of blockade of TNF-α signaling and evaluated the cytokine and effector-level events. Blockade of TNF-α signaling mainly protected the small intestine but not the liver. Infection induced the selective expansion of IL-17A-producing Vγ4 and Vγ6 T cell receptor (TCR) γδ T cells in the small intestine, and IL-17A, together with TNF-α, played a critical role in the transition to severe disease via the induction of inflammatory cytokines such as TNF-α, IL-1ß, and particularly the excess production of IL-6. Infection also induced the infiltration of neutrophils, as well as neutrophil collagenase/matrix metalloprotease 8 production. Blockade of IL-17A signaling reduced mortality and suppressed the expression of most of these cytokines, including TNF-α, indicating that IL-17A and TNF-α synergistically enhance cytokine expression. Blockade of IL-17A prevented nuclear translocation of NF-κB p65 in stroma-like cells and epithelial cells in the small intestine but only partially prevented recruitment of immune cells to the small intestine. This study provides an overall picture of the pathogenesis of infection in individual mice at the cytokine and effector levels.


Assuntos
Dengue , Viroses , Humanos , Camundongos , Animais , Interleucina-17/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Síndrome da Liberação de Citocina , Citocinas/metabolismo , Camundongos Knockout , Linfócitos T/metabolismo , Intestino Delgado , Viroses/patologia
16.
Heliyon ; 9(8): e18983, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37600421

RESUMO

Manipulating viral genomes is an essential technique in reverse genetics and recombinant vaccine development. A strategy for manipulating large viral genomes involves introducing their entire genome into bacterial artificial chromosomes and employing Escherichia coli genetic tools. For sequence manipulation on bacterial artificial chromosomes (bacterial artificial chromosomes recombineering), a well-established method that relies on the Escherichia coli strain GS1783, and the template plasmid, pEPKan-S, is often used. This method, known as markerless DNA manipulation, allows for the generation of a recombinant bacterial artificial chromosome that does not retain the selection markers used during recombination. Although this method is highly innovative, there remains room for improvement as the plasmid is currently only available for positive selection. Additionally, differentiating true recombinants from false negatives often proves time-consuming. Consequently, an improved method for bacterial artificial chromosomes recombineering, which utilizes fluorescent proteins, has been developed. This method's core comprises three plasmids containing the I-SceI recognition site, antibiotic resistance genes (ampicillin, kanamycin, and zeocin), and fluorescent genes (YPet, mOrange, and mScarlet). The success or failure of Red recombination can be confirmed via fluorescent signals. To validate this method, the Lassa virus genes were introduced into the bacterial artificial chromosomes, containing the entire genome of the vaccinia virus strain LC16m8. Consequently, the expression of fluorescent protein genes contributed to positive selection, such as blue-white screening and counter-selection during the first and second Red recombination.

17.
BMJ Open ; 13(8): e069550, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527886

RESUMO

INTRODUCTION: Monkeypox was originally endemic locally in West Africa; however, outbreaks in non-endemic countries have been recognised since May 2022. The effectiveness of tecovirimat has been estimated against smallpox, which belongs to the same Orthopoxvirus genus as monkeypox. Thus, tecovirimat is expected to be effective against monkeypox. This study aims to evaluate the efficacy and safety of oral tecovirimat therapy for patients with smallpox and monkeypox and to prepare a scheme for oral tecovirimat use in Japan. METHODS AND ANALYSIS: This nationwide, multicentre, non-randomised, open-label, double-arm study will involve viral examination of the blood, throat swabs, urine and skin lesions, performed periodically. Participants will freely decide whether to participate in an administered group (supportive treatment plus oral tecovirimat) or a non-administered group (only supportive treatment). Tecovirimat will be administered for 14 days. To ensure that financial problems do not preclude participation in the study, the research fund will cover the cost of tecovirimat and basic hospitalisation fees. The primary endpoint is the percentage of patients with negative PCR results (cycle threshold value ≥40) for skin lesion specimens at 14 days after inclusion in the study. Secondary endpoints include mortality at 14 and 30 days, viral load in each sample, duration of fever and adverse events. The sample size is estimated to be 50 patients with monkeypox or smallpox. ETHICS AND DISSEMINATION: Written informed consent will be obtained from all participants. This study was approved by the Certified Review Board of National Center for Global Health and Medicine and published in the Japan Registry of Clinical Trials. The results of this study will be published in peer-reviewed journals and/or in presentations at academic conferences. TRIAL REGISTRATION NUMBER: jRCTs031220169.


Assuntos
COVID-19 , Mpox , Varíola , Humanos , Mpox/tratamento farmacológico , Varíola/tratamento farmacológico , SARS-CoV-2 , Antivirais/efeitos adversos , Benzamidas/efeitos adversos , Estudos Multicêntricos como Assunto
18.
J Parasitol ; 109(4): 340-348, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37498779

RESUMO

Leptotrombidium (Acari: Trombiculidae) mites are carriers of Orientia tsutsugamushi, the bacterial pathogen causing scrub typhus in humans. Classification of Leptotrombidium is vital because limited mite species carry O. tsutsugamushi. Generally, Leptotrombidium at the larval stage (approximately 0.2 mm in size) are used for morphological identification. However, morphological identification is often challenging because it requires considerable skills and taxonomic expertise. In this study, we found that the full-length sequences of the mitochondrial cytochrome c oxidase subunit 1 gene varied among the significant Leptotrombidium. On the basis of these, we modified the canonical deoxyribonucleic acid (DNA) barcoding method for animals by redesigning the primer set to be suitable for Leptotrombidium. Polymerase chain reaction with the redesigned primer set drastically increased the detection sensitivity, especially against Leptotrombidium scutellare (approximately 17% increase), one of the significant mites carrying O. tsutsugamushi. Phylogenetic analysis showed that the samples morphologically classified as L. scutellare and Leptotrombidium pallidum were further split into 3 and 2 distinct subclusters respectively. The mean genetic distance (p-distance) between L. scutellare and L. pallidum was 0.2147, whereas the mean distances within each species were 0.052 and 0.044, respectively. Within L. scutellare, the mean genetic distances between the 3 subclusters were 0.1626-0.1732, whereas the distances within each subcluster were 0.003-0.017. Within L. pallidum, the mean genetic distance between the 2 subclusters was 0.1029, whereas the distances within each subcluster were 0.010-0.013. The DNA barcoding uncovered a broad genetic diversity of Leptotrombidium, especially of L. scutellare and L. pallidum, the notable species carrying O. tsutsugamushi. We conclude that the DNA barcoding using our primers enables precise and detailed classification of Leptotrombidium and implies the existence of a subgenotype in Leptotrombidium that had not been found by morphological identification.


Assuntos
Ácaros e Carrapatos , Orientia tsutsugamushi , Tifo por Ácaros , Trombiculidae , Animais , Humanos , Tifo por Ácaros/microbiologia , Orientia tsutsugamushi/genética , Filogenia , Bactérias , Variação Genética
19.
Microbiol Spectr ; 11(4): e0056623, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37409948

RESUMO

Mpox virus (formerly monkeypox virus [MPXV]) is a neglected zoonotic pathogen that caused a worldwide outbreak in May 2022. Given the lack of an established therapy, the development of an anti-MPXV strategy is of vital importance. To identify drug targets for the development of anti-MPXV agents, we screened a chemical library using an MPXV infection cell assay and found that gemcitabine, trifluridine, and mycophenolic acid (MPA) inhibited MPXV propagation. These compounds showed broad-spectrum anti-orthopoxvirus activities and presented lower 90% inhibitory concentrations (0.026 to 0.89 µM) than brincidofovir, an approved anti-smallpox agent. These three compounds have been suggested to target the postentry step to reduce the intracellular production of virions. Knockdown of IMP dehydrogenase (IMPDH), the rate-limiting enzyme of guanosine biosynthesis and a target of MPA, dramatically reduced MPXV DNA production. Moreover, supplementation with guanosine recovered the anti-MPXV effect of MPA, suggesting that IMPDH and its guanosine biosynthetic pathway regulate MPXV replication. By targeting IMPDH, we identified a series of compounds with stronger anti-MPXV activity than MPA. This evidence shows that IMPDH is a potential target for the development of anti-MPXV agents. IMPORTANCE Mpox is a zoonotic disease caused by infection with the mpox virus, and a worldwide outbreak occurred in May 2022. The smallpox vaccine has recently been approved for clinical use against mpox in the United States. Although brincidofovir and tecovirimat are drugs approved for the treatment of smallpox by the U.S. Food and Drug Administration, their efficacy against mpox has not been established. Moreover, these drugs may present negative side effects. Therefore, new anti-mpox virus agents are needed. This study revealed that gemcitabine, trifluridine, and mycophenolic acid inhibited mpox virus propagation and exhibited broad-spectrum anti-orthopoxvirus activities. We also suggested IMP dehydrogenase as a potential target for the development of anti-mpox virus agents. By targeting this molecule, we identified a series of compounds with stronger anti-mpox virus activity than mycophenolic acid.


Assuntos
Monkeypox virus , Ácido Micofenólico , Guanosina/farmacologia , IMP Desidrogenase/genética , IMP Desidrogenase/metabolismo , Ácido Micofenólico/farmacologia , Trifluridina , Monkeypox virus/efeitos dos fármacos
20.
iScience ; 26(5): 106694, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37124417

RESUMO

Evaluating the serum cross-neutralization responses after breakthrough infection with various SARS-CoV-2 variants provides valuable insight for developing variant-proof COVID-19 booster vaccines. However, fairly comparing the impact of breakthrough infections with distinct epidemic timing on cross-neutralization responses, influenced by the exposure interval between vaccination and infection, is challenging. To compare the impact of pre-Omicron to Omicron breakthrough infection, we estimated the effects on cross-neutralizing responses by the exposure interval using Bayesian hierarchical modeling. The saturation time required to generate saturated cross-neutralization responses differed by variant, with variants more antigenically distant from the ancestral strain requiring longer intervals of 2-4 months. The breadths of saturated cross-neutralization responses to Omicron lineages were comparable in pre-Omicron and Omicron breakthrough infections. Our results highlight the importance of vaccine dosage intervals of 4 months or longer, regardless of the antigenicity of the exposed antigen, to maximize the breadth of serum cross-neutralization covering SARS-CoV-2 Omicron lineages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...