Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 13: 1130034, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36895472

RESUMO

Introduction: Mutations affecting the RAS-MAPK pathway occur frequently in relapsed neuroblastoma tumors and are associated with response to MEK inhibition in vitro. However, these inhibitors alone do not lead to tumor regression in vivo, indicating the need for combination therapy. Methods and results: Via high-throughput combination screening, we identified that the MEK inhibitor trametinib can be combined with BCL-2 family member inhibitors, to efficiently inhibit growth of neuroblastoma cell lines with RAS-MAPK mutations. Suppressing the RAS-MAPK pathway with trametinib led to an increase in pro-apoptotic BIM, resulting in more BIM binding to anti-apoptotic BCL-2 family members. By favoring the formation of these complexes, trametinib treatment enhances sensitivity to compounds targeting anti-apoptotic BCL-2 family members. In vitro validation studies confirmed that this sensitizing effect is dependent on an active RAS-MAPK pathway. In vivo combination of trametinib with BCL-2 inhibitors led to tumor inhibition in NRAS-mutant and NF1-deleted xenografts. Conclusion: Together, these results show that combining MEK inhibition with BCL-2 family member inhibition could potentially improve therapeutic outcomes for RAS-MAPK-mutated neuroblastoma patients.

2.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34479993

RESUMO

Neuroblastomas are childhood tumors with frequent fatal relapses after induction treatment, which is related to tumor evolution with additional genomic events. Our whole-genome sequencing data analysis revealed a high frequency of somatic cytosine > adenine (C > A) substitutions in primary neuroblastoma tumors, which was associated with poor survival. We showed that increased levels of C > A substitutions correlate with copy number loss (CNL) of OGG1 or MUTYH Both genes encode DNA glycosylases that recognize 8-oxo-guanine (8-oxoG) lesions as a first step of 8-oxoG repair. Tumor organoid models with CNL of OGG1 or MUTYH show increased 8-oxoG levels compared to wild-type cells. We used CRISPR-Cas9 genome editing to create knockout clones of MUTYH and OGG1 in neuroblastoma cells. Whole-genome sequencing of single-cell OGG1 and MUTYH knockout clones identified an increased accumulation of C > A substitutions. Mutational signature analysis of these OGG1 and MUTYH knockout clones revealed enrichment for C > A signatures 18 and 36, respectively. Clustering analysis showed that the knockout clones group together with tumors containing OGG1 or MUTYH CNL. In conclusion, we demonstrate that defects in 8-oxoG repair cause accumulation of C > A substitutions in neuroblastoma, which contributes to mutagenesis and tumor evolution.


Assuntos
Reparo do DNA/genética , Guanosina/análogos & derivados , Neuroblastoma/genética , Adenina/metabolismo , Criança , Citosina/metabolismo , Dano ao DNA , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Feminino , Guanina/metabolismo , Guanosina/genética , Guanosina/metabolismo , Humanos , Masculino , Mutagênese , Recidiva Local de Neoplasia/genética , Neuroblastoma/metabolismo , Estresse Oxidativo , Polimorfismo de Nucleotídeo Único/genética
3.
J Clin Invest ; 130(11): 5875-5892, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33016930

RESUMO

The undruggable nature of oncogenic Myc transcription factors poses a therapeutic challenge in neuroblastoma, a pediatric cancer in which MYCN amplification is strongly associated with unfavorable outcome. Here, we show that CYC065 (fadraciclib), a clinical inhibitor of CDK9 and CDK2, selectively targeted MYCN-amplified neuroblastoma via multiple mechanisms. CDK9 - a component of the transcription elongation complex P-TEFb - bound to the MYCN-amplicon superenhancer, and its inhibition resulted in selective loss of nascent MYCN transcription. MYCN loss led to growth arrest, sensitizing cells for apoptosis following CDK2 inhibition. In MYCN-amplified neuroblastoma, MYCN invaded active enhancers, driving a transcriptionally encoded adrenergic gene expression program that was selectively reversed by CYC065. MYCN overexpression in mesenchymal neuroblastoma was sufficient to induce adrenergic identity and sensitize cells to CYC065. CYC065, used together with temozolomide, a reference therapy for relapsed neuroblastoma, caused long-term suppression of neuroblastoma growth in vivo, highlighting the clinical potential of CDK9/2 inhibition in the treatment of MYCN-amplified neuroblastoma.


Assuntos
Adenosina/análogos & derivados , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Proteína Proto-Oncogênica N-Myc/biossíntese , Neuroblastoma/tratamento farmacológico , Temozolomida/farmacologia , Adenosina/farmacologia , Linhagem Celular Tumoral , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 9 Dependente de Ciclina/metabolismo , Elementos Facilitadores Genéticos , Humanos , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Fator B de Elongação Transcricional Positiva/genética , Fator B de Elongação Transcricional Positiva/metabolismo , Transcrição Gênica/efeitos dos fármacos
4.
Cancer Res ; 78(21): 6297-6307, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30115695

RESUMO

Mutations affecting the RAS-MAPK pathway frequently occur in relapsed neuroblastoma tumors, which suggests that activation of this pathway is associated with a more aggressive phenotype. To explore this hypothesis, we generated several model systems to define a neuroblastoma RAS-MAPK pathway signature. Activation of this pathway in primary tumors indeed correlated with poor survival and was associated with known activating mutations in ALK and other RAS-MAPK pathway genes. Integrative analysis showed that mutations in PHOX2B, CIC, and DMD were also associated with an activated RAS-MAPK pathway. Mutation of PHOX2B and deletion of CIC in neuroblastoma cell lines induced activation of the RAS-MAPK pathway. This activation was independent of phosphorylated ERK in CIC knockout systems. Furthermore, deletion of CIC caused a significant increase in tumor growth in vivo These results show that the RAS-MAPK pathway is involved in tumor progression and establish CIC as a powerful tumor suppressor that functions downstream of this pathway in neuroblastoma.Significance: This work identifies CIC as a powerful tumor suppressor affecting the RAS-MAPK pathway in neuroblastoma and reinforces the importance of mutation-driven activation of this pathway in cancer. Cancer Res; 78(21); 6297-307. ©2018 AACR.


Assuntos
Sistema de Sinalização das MAP Quinases , Neuroblastoma/genética , Proteínas Repressoras/genética , Animais , Linhagem Celular Tumoral , Análise por Conglomerados , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genes ras , Genoma Humano , Genômica , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Camundongos Knockout , Camundongos Nus , Mutação , Recidiva Local de Neoplasia/genética , Transplante de Neoplasias , Neuroblastoma/patologia , Fenótipo , Fosforilação , Prognóstico , Proteínas Repressoras/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Resultado do Tratamento
5.
Nat Genet ; 49(8): 1261-1266, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28650485

RESUMO

Neuroblastoma and other pediatric tumors show a paucity of gene mutations, which has sparked an interest in their epigenetic regulation. Several tumor types include phenotypically divergent cells, resembling cells from different lineage development stages. It has been proposed that super-enhancer-associated transcription factor (TF) networks underlie lineage identity, but the role of these enhancers in intratumoral heterogeneity is unknown. Here we show that most neuroblastomas include two types of tumor cells with divergent gene expression profiles. Undifferentiated mesenchymal cells and committed adrenergic cells can interconvert and resemble cells from different lineage differentiation stages. ChIP-seq analysis of isogenic pairs of mesenchymal and adrenergic cells identified a distinct super-enhancer landscape and super-enhancer-associated TF network for each cell type. Expression of the mesenchymal TF PRRX1 could reprogram the super-enhancer and mRNA landscapes of adrenergic cells toward a mesenchymal state. Mesenchymal cells were more chemoresistant in vitro and were enriched in post-therapy and relapse tumors. Two super-enhancer-associated TF networks, which probably mediate lineage control in normal development, thus dominate epigenetic control of neuroblastoma and shape intratumoral heterogeneity.


Assuntos
Diferenciação Celular/genética , Epigênese Genética , Neuroblastoma/genética , Neuroblastoma/patologia , Antígeno AC133/genética , Neurônios Adrenérgicos/citologia , Linhagem Celular Tumoral , Linhagem da Célula , Proteínas de Homeodomínio/genética , Humanos , Mesoderma/citologia , Fatores de Transcrição/metabolismo , Transcriptoma
6.
Eur J Cancer ; 75: 63-72, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28214660

RESUMO

Neuroblastoma is predominantly characterised by chromosomal rearrangements. Next to V-Myc Avian Myelocytomatosis Viral Oncogene Neuroblastoma Derived Homolog (MYCN) amplification, chromosome 7 and 17q gains are frequently observed. We identified a neuroblastoma patient with a regional 7q36 gain, encompassing the enhancer of zeste homologue 2 (EZH2) gene. EZH2 is the histone methyltransferase of lysine 27 of histone H3 (H3K27me3) that forms the catalytic subunit of the polycomb repressive complex 2. H3K27me3 is commonly associated with the silencing of genes involved in cellular processes such as cell cycle regulation, cellular differentiation and cancer. High EZH2 expression correlated with poor prognosis and overall survival independent of MYCN amplification status. Unexpectedly, treatment of 3 EZH2-high expressing neuroblastoma cell lines (IMR32, CHP134 and NMB), with EZH2-specific inhibitors (GSK126 and EPZ6438) resulted in only a slight G1 arrest, despite maximum histone methyltransferase activity inhibition. Furthermore, colony formation in cell lines treated with the inhibitors was reduced only at concentrations much higher than necessary for complete inhibition of EZH2 histone methyltransferase activity. Knockdown of the complete protein with three independent shRNAs resulted in a strong apoptotic response and decreased cyclin D1 levels. This apoptotic response could be rescued by overexpressing EZH2ΔSET, a truncated form of wild-type EZH2 lacking the SET transactivation domain necessary for histone methyltransferase activity. Our findings suggest that high EZH2 expression, at least in neuroblastoma, has a survival function independent of its methyltransferase activity. This important finding highlights the need for studies on EZH2 beyond its methyltransferase function and the requirement for compounds that will target EZH2 as a complete protein.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/fisiologia , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Neuroblastoma/enzimologia , Benzamidas/farmacologia , Compostos de Bifenilo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Aberrações Cromossômicas , Cromossomos Humanos Par 7 , Regulação para Baixo/efeitos dos fármacos , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Inibidores Enzimáticos/farmacologia , Técnicas de Silenciamento de Genes , Rearranjo Gênico , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/fisiologia , Humanos , Indóis/farmacologia , Morfolinas , Neuroblastoma/fisiopatologia , Prognóstico , Piridonas/farmacologia
7.
Clin Cancer Res ; 21(22): 5100-9, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26202950

RESUMO

PURPOSE: MYCN-dependent neuroblastomas have low cure rates with current multimodal treatment regimens and novel therapeutic drugs are therefore urgently needed. In previous preclinical studies, we have shown that targeted inhibition of cyclin-dependent kinase 2 (CDK2) resulted in specific killing of MYCN-amplified neuroblastoma cells. This study describes the in vivo preclinical evaluation of the CDK inhibitor AT7519. EXPERIMENTAL DESIGN: Preclinical drug testing was performed using a panel of MYCN-amplified and MYCN single copy neuroblastoma cell lines and different MYCN-dependent mouse models of neuroblastoma. RESULTS: AT7519 killed MYCN-amplified neuroblastoma cell lines more potently than MYCN single copy cell lines with a median LC50 value of 1.7 compared to 8.1 µmol/L (P = 0.0053) and a significantly stronger induction of apoptosis. Preclinical studies in female NMRI homozygous (nu/nu) mice with neuroblastoma patient-derived MYCN-amplified AMC711T xenografts revealed dose-dependent growth inhibition, which correlated with intratumoral AT7519 levels. CDK2 target inhibition by AT7519 was confirmed by significant reductions in levels of phosphorylated retinoblastoma (p-Rb) and nucleophosmin (p-NPM). AT7519 treatment of Th-MYCN transgenic mice resulted in improved survival and clinically significant tumor regression (average tumor size reduction of 86% at day 7 after treatment initiation). The improved efficacy of AT7519 observed in Th-MYCN mice correlated with higher tumor exposure to the drug. CONCLUSIONS: This study strongly suggests that AT7519 is a promising drug for the treatment of high-risk neuroblastoma patients with MYCN amplification.


Assuntos
Neuroblastoma/tratamento farmacológico , Proteínas Nucleares/genética , Proteínas Oncogênicas/genética , Piperidinas/administração & dosagem , Inibidores de Proteínas Quinases/administração & dosagem , Pirazóis/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 2 Dependente de Ciclina/biossíntese , Quinase 2 Dependente de Ciclina/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Proteína Proto-Oncogênica N-Myc , Neuroblastoma/genética , Neuroblastoma/patologia , Proteínas Nucleares/biossíntese , Proteínas Oncogênicas/biossíntese , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Nat Genet ; 47(8): 864-71, 2015 08.
Artigo em Inglês | MEDLINE | ID: mdl-26121087

RESUMO

The majority of patients with neuroblastoma have tumors that initially respond to chemotherapy, but a large proportion will experience therapy-resistant relapses. The molecular basis of this aggressive phenotype is unknown. Whole-genome sequencing of 23 paired diagnostic and relapse neuroblastomas showed clonal evolution from the diagnostic tumor, with a median of 29 somatic mutations unique to the relapse sample. Eighteen of the 23 relapse tumors (78%) showed mutations predicted to activate the RAS-MAPK pathway. Seven of these events were detected only in the relapse tumor, whereas the others showed clonal enrichment. In neuroblastoma cell lines, we also detected a high frequency of activating mutations in the RAS-MAPK pathway (11/18; 61%), and these lesions predicted sensitivity to MEK inhibition in vitro and in vivo. Our findings provide a rationale for genetic characterization of relapse neuroblastomas and show that RAS-MAPK pathway mutations may function as a biomarker for new therapeutic approaches to refractory disease.


Assuntos
Sistema de Sinalização das MAP Quinases/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Mutação , Recidiva Local de Neoplasia/genética , Neuroblastoma/genética , Proteínas ras/genética , Quinase do Linfoma Anaplásico , Animais , Benzimidazóis/farmacologia , Western Blotting , Linhagem Celular Tumoral , Criança , Pré-Escolar , Aberrações Cromossômicas , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Lactente , Masculino , Camundongos SCID , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Fosforilação/efeitos dos fármacos , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas ras/metabolismo
9.
Eur J Cancer ; 50(3): 628-37, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24321263

RESUMO

Recently protocols have been devised for the culturing of cell lines from fresh tumours under serum-free conditions in defined neural stem cell medium. These cells, frequently called tumour initiating cells (TICs) closely retained characteristics of the tumours of origin. We report the isolation of eight newly-derived neuroblastoma TICs from six primary neuroblastoma tumours and two bone marrow metastases. The primary tumours from which these TICs were generated have previously been fully typed by whole genome sequencing (WGS). Array comparative genomic hybridisation (aCGH) analysis showed that TIC lines retained essential characteristics of the primary tumours and exhibited typical neuroblastoma chromosomal aberrations such as MYCN amplification, gain of chromosome 17q and deletion of 1p36. Protein analysis showed expression for neuroblastoma markers MYCN, NCAM, CHGA, DBH and TH while haematopoietic markers CD19 and CD11b were absent. We analysed the growth characteristics and confirmed tumour-forming potential using sphere-forming assays, subcutaneous and orthotopic injection of these cells into immune-compromised mice. Affymetrix mRNA expression profiling of TIC line xenografts showed an expression pattern more closely mimicking primary tumours compared to xenografts from classical cell lines. This establishes that these neuroblastoma TICs cultured under serum-free conditions are relevant and useful neuroblastoma tumour models.


Assuntos
Linhagem Celular Tumoral , Neuroblastoma/genética , Neuroblastoma/patologia , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Criança , Pré-Escolar , Meios de Cultura Livres de Soro , Genótipo , Humanos , Lactente , Camundongos , Camundongos Nus , Neuroblastoma/metabolismo , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
10.
Nat Genet ; 44(11): 1199-206, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23042116

RESUMO

LIN28B regulates developmental processes by modulating microRNAs (miRNAs) of the let-7 family. A role for LIN28B in cancer has been proposed but has not been established in vivo. Here, we report that LIN28B showed genomic aberrations and extensive overexpression in high-risk neuroblastoma compared to several other tumor entities and normal tissues. High LIN28B expression was an independent risk factor for adverse outcome in neuroblastoma. LIN28B signaled through repression of the let-7 miRNAs and consequently resulted in elevated MYCN protein expression in neuroblastoma cells. LIN28B-let-7-MYCN signaling blocked differentiation of normal neuroblasts and neuroblastoma cells. These findings were fully recapitulated in a mouse model in which LIN28B expression in the sympathetic adrenergic lineage induced development of neuroblastomas marked by low let-7 miRNA levels and high MYCN protein expression. Interference with this pathway might offer therapeutic perspectives.


Assuntos
Proteínas de Ligação a DNA/genética , MicroRNAs , Neuroblastoma , Proteínas Nucleares , Proteínas Oncogênicas , Animais , Diferenciação Celular , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína Proto-Oncogênica N-Myc , Neuroblastoma/genética , Neuroblastoma/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Proteínas de Ligação a RNA , Transdução de Sinais
11.
Eur J Cancer ; 48(16): 3093-103, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22366560

RESUMO

Genomic aberrations of key regulators of the apoptotic pathway have hardly been identified in neuroblastoma. We detected high BCL2 mRNA and protein levels in the majority of neuroblastoma tumours by Affymetrix expression profiling and Tissue Micro Array analysis. This BCL2 mRNA expression is strongly elevated compared to normal tissues and other malignancies. Most neuroblastoma cell lines lack this high BCL2 expression. Only two neuroblastoma cell lines (KCNR and SJNB12) show BCL2 expression levels representative for neuroblastoma tumours. To validate BCL2 as a therapeutic target in neuroblastoma we employed lentivirally mediated shRNA. Silencing of BCL2 in KCNR and SJNB12 resulted in massive apoptosis, while cell lines with low BCL2 expression were insensitive. Identical results were obtained by treatment of the neuroblastoma cell lines with the small molecule BCL2 inhibitor ABT263, which is currently being clinically evaluated. Combination assays of ABT263 with most classical cytostatics showed strong synergistic responses. Subcutaneous xenografts of a neuroblastoma cell line with high BCL2 expression in NMRI nu/nu mice showed a strong response to ABT263. These findings establish BCL2 as a promising drug target in neuroblastoma and warrant further evaluation of ABT263 and other BCL2 inhibiting drugs.


Assuntos
Compostos de Anilina/farmacologia , Antineoplásicos/farmacologia , Terapia de Alvo Molecular , Neuroblastoma/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Sulfonamidas/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Camundongos , Camundongos Nus , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , RNA Mensageiro/metabolismo , Fatores de Tempo , Transfecção , Carga Tumoral/efeitos dos fármacos , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Nature ; 483(7391): 589-93, 2012 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-22367537

RESUMO

Neuroblastoma is a childhood tumour of the peripheral sympathetic nervous system. The pathogenesis has for a long time been quite enigmatic, as only very few gene defects were identified in this often lethal tumour. Frequently detected gene alterations are limited to MYCN amplification (20%) and ALK activations (7%). Here we present a whole-genome sequence analysis of 87 neuroblastoma of all stages. Few recurrent amino-acid-changing mutations were found. In contrast, analysis of structural defects identified a local shredding of chromosomes, known as chromothripsis, in 18% of high-stage neuroblastoma. These tumours are associated with a poor outcome. Structural alterations recurrently affected ODZ3, PTPRD and CSMD1, which are involved in neuronal growth cone stabilization. In addition, ATRX, TIAM1 and a series of regulators of the Rac/Rho pathway were mutated, further implicating defects in neuritogenesis in neuroblastoma. Most tumours with defects in these genes were aggressive high-stage neuroblastomas, but did not carry MYCN amplifications. The genomic landscape of neuroblastoma therefore reveals two novel molecular defects, chromothripsis and neuritogenesis gene alterations, which frequently occur in high-risk tumours.


Assuntos
Cromossomos Humanos/genética , Neuritos/metabolismo , Neuroblastoma/genética , Neuroblastoma/patologia , Envelhecimento/genética , Análise por Conglomerados , DNA Helicases/genética , Análise Mutacional de DNA , Regulação Neoplásica da Expressão Gênica , Genoma Humano/genética , Cones de Crescimento/metabolismo , Cones de Crescimento/patologia , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Mutação , Estadiamento de Neoplasias , Neuroblastoma/diagnóstico , Neuroblastoma/metabolismo , Proteínas Nucleares/genética , Prognóstico , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T , Proteína Nuclear Ligada ao X , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
13.
Genes Chromosomes Cancer ; 51(1): 10-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22034077

RESUMO

The tightly controlled network of cell cycle genes consists of a core of cyclin dependent kinases (CDKs) that are activated by periodically expressed cyclins. The activity of the cyclin-CDK complexes is regulated by cyclin dependent kinase inhibitors (CDKIs) and multiple signal transduction routes that converge on the cell cycle. Neuroblastoma are pediatric tumors that belong to the group of small round blue cell tumors, characterized by a fast proliferation. Here, we present high throughput analyses of cell cycle regulating genes in neuroblastoma. We analyzed a series of 82 neuroblastomas by comparative genomic hybridization arrays, single nucleotide polymorphism arrays, and Affymetrix expression arrays and analyzed the datasets in parallel with the R2 bioinformatic tool (http://r2.amc.nl). About 30% of the tumors had genomic amplifications, gains, or losses with shortest regions of overlap that suggested implication of a series of G1 cell cycle regulating genes. CCND1 (cyclin D1) and CDK4 were amplified or gained and the chromosomal regions containing the CDKN2 (INK4) group of CDKIs were frequently deleted. Cluster analysis showed that tumors with genomic aberrations in G1 regulating genes over-expressed E2F target genes, which regulate S and G2/M phase progression. These tumors have a poor prognosis. Our findings suggest that pharmacological inhibition of cell cycle genes might bear therapeutic promises for patients with high risk neuroblastoma.


Assuntos
Fatores de Transcrição E2F/metabolismo , Fase G1/genética , Dosagem de Genes , Genes cdc , Neuroblastoma/genética , Aberrações Cromossômicas , Análise por Conglomerados , Ciclina D1/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Quinases Ciclina-Dependentes/genética , Expressão Gênica , Humanos , Neuroblastoma/diagnóstico , Prognóstico , RNA Mensageiro/genética
14.
Endocr Relat Cancer ; 18(6): 657-68, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21859926

RESUMO

BIRC5 (survivin) is one of the genes located on chromosome arm 17q in the region that is often gained in neuroblastoma. BIRC5 is a protein in the intrinsic apoptotic pathway that interacts with XIAP and DIABLO leading to caspase-3 and caspase-9 inactivation. BIRC5 is also involved in stabilizing the microtubule-kinetochore dynamics. Based on the Affymetrix mRNA expression data, we here show that BIRC5 expression is strongly upregulated in neuroblastoma compared with normal tissues, adult malignancies, and non-malignant fetal adrenal neuroblasts. The over-expression of BIRC5 correlates with an unfavorable prognosis independent of the presence of 17q gain. Silencing of BIRC5 in neuroblastoma cell lines by various antisense molecules resulted in massive apoptosis as measured by PARP cleavage and FACS analysis. As both the intrinsic apoptotic pathway and the chromosomal passenger complex can be therapeutically targeted, we investigated in which of them BIRC5 exerted its essential anti-apoptotic role. Immunofluorescence analysis of neuroblastoma cells after BIRC5 silencing showed formation of multinucleated cells indicating mitotic catastrophe, which leads to apoptosis via P53 and CASP2. We show that BIRC5 silencing indeed resulted in activation of P53 and we could rescue apoptosis by CASP2 inhibition. We conclude that BIRC5 stabilizes the microtubules in the chromosomal passenger complex in neuroblastoma and that the apoptotic response results from mitotic catastrophe, which makes BIRC5 an interesting target for therapy.


Assuntos
Apoptose/fisiologia , Proteínas Inibidoras de Apoptose/deficiência , Mitose/fisiologia , Neuroblastoma/patologia , Western Blotting , Caspase 2/fisiologia , Inibidores de Caspase , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Cisteína Endopeptidases/fisiologia , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Neuroblastoma/genética , Neuroblastoma/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Oligonucleotídeos/farmacologia , RNA Neoplásico/química , RNA Neoplásico/genética , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Survivina , Análise Serial de Tecidos/métodos , Proteína Supressora de Tumor p53/fisiologia
15.
Proc Natl Acad Sci U S A ; 106(31): 12968-73, 2009 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-19525400

RESUMO

Two genes have a synthetically lethal relationship when the silencing or inhibiting of 1 gene is only lethal in the context of a mutation or activation of the second gene. This situation offers an attractive therapeutic strategy, as inhibition of such a gene will only trigger cell death in tumor cells with an activated second oncogene but spare normal cells without activation of the second oncogene. Here we present evidence that CDK2 is synthetically lethal to neuroblastoma cells with MYCN amplification and over-expression. Neuroblastomas are childhood tumors with an often lethal outcome. Twenty percent of the tumors have MYCN amplification, and these tumors are ultimately refractory to any therapy. Targeted silencing of CDK2 by 3 RNA interference techniques induced apoptosis in MYCN-amplified neuroblastoma cell lines, but not in MYCN single copy cells. Silencing of MYCN abrogated this apoptotic response in MYCN-amplified cells. Inversely, silencing of CDK2 in MYCN single copy cells did not trigger apoptosis, unless a MYCN transgene was activated. The MYCN induced apoptosis after CDK2 silencing was accompanied by nuclear stabilization of P53, and mRNA profiling showed up-regulation of P53 target genes. Silencing of P53 rescued the cells from MYCN-driven apoptosis. The synthetic lethality of CDK2 silencing in MYCN activated neuroblastoma cells can also be triggered by inhibition of CDK2 with a small molecule drug. Treatment of neuroblastoma cells with roscovitine, a CDK inhibitor, at clinically achievable concentrations induced MYCN-dependent apoptosis. The synthetically lethal relationship between CDK2 and MYCN indicates CDK2 inhibitors as potential MYCN-selective cancer therapeutics.


Assuntos
Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Neuroblastoma/terapia , Proteínas Nucleares/genética , Proteínas Oncogênicas/genética , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Quinase 2 Dependente de Ciclina/genética , Amplificação de Genes , Humanos , Proteína Proto-Oncogênica N-Myc , Neuroblastoma/genética , Neuroblastoma/patologia , Purinas/farmacologia , Interferência de RNA , Roscovitina , Proteína Supressora de Tumor p53/fisiologia
16.
Cancer Res ; 68(8): 2599-609, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18413728

RESUMO

Genomic aberrations of Cyclin D1 (CCND1), CDK4, and CDK6 in neuroblastoma indicate that dysregulation of the G(1) entry checkpoint is an important cell cycle aberration in this pediatric tumor. Here, we report that analysis of Affymetrix expression data of primary neuroblastic tumors shows an extensive overexpression of Cyclin D1, which correlates with histologic subgroups. Immunohistochemical analysis showed overexpression of Cyclin D1 in neuroblasts and low Cyclin D1 expression in all cell types in ganglioneuroma. This suggests an involvement of G(1)-regulating genes in neuronal differentiation processes which we further evaluated using RNA interference against Cyclin D1 and its kinase partners CDK4 and CDK6 in several neuroblastoma cell lines. The Cyclin D1 and CDK4 knockdown resulted in pRb pathway inhibition as shown by an almost complete disappearance of CDK4/CDK6-specific pRb phosphorylation, reduction of E2F transcriptional activity, and a decrease of Cyclin A protein levels. Phenotype analysis showed a significant reduction in cell proliferation, a G(1)-specific cell cycle arrest, and, moreover, an extensive neuronal differentiation. Affymetrix microarray profiling of small interfering RNA-treated cells revealed a shift in expression profile toward a neuronal phenotype. Several new potential downstream players are identified. We conclude that neuroblastoma functionally depend on overexpression of G(1)-regulating genes to maintain their undifferentiated phenotype.


Assuntos
Neoplasias Encefálicas/genética , Quinase 4 Dependente de Ciclina/genética , Ciclinas/genética , Neuroblastoma/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Ciclo Celular/genética , Diferenciação Celular , Criança , Ciclina D , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Ciclinas/metabolismo , Ganglioneuroma/genética , Ganglioneuroma/metabolismo , Ganglioneuroma/patologia , Humanos , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Interferência de RNA , RNA Neoplásico/genética , Ativação Transcricional
17.
Blood ; 101(4): 1270-6, 2003 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-12406912

RESUMO

Infant acute lymphoblastic leukemia (ALL) is characterized by a high incidence of mixed lineage leukemia (MLL) gene rearrangements, a poor outcome, and resistance to chemotherapeutic drugs. One exception is cytosine arabinoside (Ara-C), to which infant ALL cells are highly sensitive. To investigate the mechanism underlying Ara-C sensitivity in infants with ALL, mRNA levels of Ara-C-metabolizing enzymes were measured in infants (n = 18) and older children (noninfants) with ALL (n = 24). In the present study, infant ALL cells were 3.3-fold more sensitive to Ara-C (P =.007) and accumulated 2.3-fold more Ara-CTP (P =.011) upon exposure to Ara-C, compared with older children with ALL. Real-time quantitative reverse trancriptase-polymerase chain reaction (RT-PCR) (TaqMan) revealed that infants express 2-fold less of the Ara-C phosphorylating enzyme deoxycytidine kinase (dCK) mRNA (P =.026) but 2.5-fold more mRNA of the equilibrative nucleoside transporter 1 (hENT1), responsible for Ara-C membrane transport (P =.001). The mRNA expression of pyrimidine nucleotidase I (PN-I), cytidine deaminase (CDA), and deoxycytidylate deaminase (dCMPD) did not differ significantly between both groups. hENT1 mRNA expression inversely correlated with in vitro resistance to Ara-C (r(s) = -0.58, P =.006). The same differences concerning dCK and hENT1 mRNA expression were observed between MLL gene-rearranged (n = 14) and germ line MLL cases (n = 25). An oligonucleotide microarray screen (Affymetrix) comparing patients with MLL gene-rearranged ALL with those with nonrearranged ALL also showed a 1.9-fold lower dCK (P =.001) and a 2.7-fold higher hENT1 (P =.046) mRNA expression in patients with MLL gene-rearranged ALL. We conclude that an elevated expression of hENT1, which transports Ara-C across the cell membrane, contributes to Ara-C sensitivity in MLL gene-rearranged infant ALL.


Assuntos
Citarabina/metabolismo , Citarabina/uso terapêutico , Proteínas de Ligação a DNA/genética , Expressão Gênica , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/enzimologia , Proto-Oncogenes , Fatores de Transcrição , Arabinofuranosilcitosina Trifosfato/metabolismo , Sobrevivência Celular , Criança , Pré-Escolar , DCMP Desaminase/genética , Desoxicitidina Quinase/genética , Resistencia a Medicamentos Antineoplásicos/genética , Transportador Equilibrativo 1 de Nucleosídeo/genética , Feminino , Rearranjo Gênico , Histona-Lisina N-Metiltransferase , Humanos , Lactente , Masculino , Proteína de Leucina Linfoide-Mieloide , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Nucleotídeos de Pirimidina/genética , RNA Mensageiro/análise , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...