Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 7: e6088, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30783558

RESUMO

The extinct giant shark Otodus megalodon is the last member of the predatory megatoothed lineage and is reported from Neogene sediments from nearly all continents. The timing of the extinction of Otodus megalodon is thought to be Pliocene, although reports of Pleistocene teeth fuel speculation that Otodus megalodon may still be extant. The longevity of the Otodus lineage (Paleocene to Pliocene) and its conspicuous absence in the modern fauna begs the question: when and why did this giant shark become extinct? Addressing this question requires a densely sampled marine vertebrate fossil record in concert with a robust geochronologic framework. Many historically important basins with stacked Otodus-bearing Neogene marine vertebrate fossil assemblages lack well-sampled and well-dated lower and upper Pliocene strata (e.g., Atlantic Coastal Plain). The fossil record of California, USA, and Baja California, Mexico, provides such an ideal sequence of assemblages preserved within well-dated lithostratigraphic sequences. This study reviews all records of Otodus megalodon from post-Messinian marine strata from western North America and evaluates their reliability. All post-Zanclean Otodus megalodon occurrences from the eastern North Pacific exhibit clear evidence of reworking or lack reliable provenance; the youngest reliable records of Otodus megalodon are early Pliocene, suggesting an extinction at the early-late Pliocene boundary (∼3.6 Ma), corresponding with youngest occurrences of Otodus megalodon in Japan, the North Atlantic, and Mediterranean. This study also reevaluates a published dataset, thoroughly vetting each occurrence and justifying the geochronologic age of each, as well as excluding several dubious records. Reanalysis of the dataset using optimal linear estimation resulted in a median extinction date of 3.51 Ma, somewhat older than a previously proposed Pliocene-Pleistocene extinction date (2.6 Ma). Post-middle Miocene oceanographic changes and cooling sea surface temperature may have resulted in range fragmentation, while alongside competition with the newly evolved great white shark (Carcharodon carcharias) during the Pliocene may have led to the demise of the megatoothed shark. Alternatively, these findings may also suggest a globally asynchronous extinction of Otodus megalodon.

2.
Nature ; 557(7703): 96-100, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29720636

RESUMO

The skull of living birds is greatly modified from the condition found in their dinosaurian antecedents. Bird skulls have an enlarged, toothless premaxillary beak and an intricate kinetic system that includes a mobile palate and jaw suspensorium. The expanded avian neurocranium protects an enlarged brain and is flanked by reduced jaw adductor muscles. However, the order of appearance of these features and the nature of their earliest manifestations remain unknown. The Late Cretaceous toothed bird Ichthyornis dispar sits in a pivotal phylogenetic position outside living groups: it is close to the extant avian radiation but retains numerous ancestral characters1-3. Although its evolutionary importance continues to be affirmed3-8, no substantial new cranial material of I. dispar has been described beyond incomplete remains recovered in the 1870s. Jurassic and Cretaceous Lagerstätten have yielded important avialan fossils, but their skulls are typically crushed and distorted 9 . Here we report four three-dimensionally preserved specimens of I. dispar-including an unusually complete skull-as well as two previously overlooked elements from the Yale Peabody Museum holotype, YPM 1450. We used these specimens to generate a nearly complete three-dimensional reconstruction of the I. dispar skull using high-resolution computed tomography. Our study reveals that I. dispar had a transitional beak-small, lacking a palatal shelf and restricted to the tips of the jaws-coupled with a kinetic system similar to that of living birds. The feeding apparatus of extant birds therefore evolved earlier than previously thought and its components were functionally and developmentally coordinated. The brain was relatively modern, but the temporal region was unexpectedly dinosaurian: it retained a large adductor chamber bounded dorsally by substantial bony remnants of the ancestral reptilian upper temporal fenestra. This combination of features documents that important attributes of the avian brain and palate evolved before the reduction of jaw musculature and the full transformation of the beak.


Assuntos
Aves/anatomia & histologia , Dinossauros/anatomia & histologia , Fósseis , Filogenia , Crânio/anatomia & histologia , Animais , Bico/anatomia & histologia , Aves/classificação , Cabeça/anatomia & histologia , Arcada Osseodentária/anatomia & histologia
3.
PLoS One ; 13(4): e0195651, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29668704

RESUMO

Late Cretaceous members of Peritresius belong to a diverse clade of marine adapted turtles currently thought to be some of the earliest representatives of the lineage leading to modern hard-shelled sea turtles (Pan-Cheloniidae). Prior studies have suggested that Peritresius was monospecific, with a distribution restricted to Maastrichtian deposits in North America. However, new Peritresius specimens identified from Alabama and Mississippi, USA, show that the genus contains two taxa, Peritresius ornatus, and a new species Peritresius martini sp. nov. These two taxa are characterized by the presence of a generally cordiform carapace with moderately serrated peripherals, well-developed ventral flanges beginning at the third peripheral, squarish umbilical and lateral plastral fontanelles, and a narrow bridge formed by the contact between the hyoplastron and hypoplastron. Peritresius martini sp. nov. can be distinguished by its lack of dermal ornamentation and the presence of a 'rib-free' 10th peripheral. These new specimens represent the first occurrences of Peritresius from the Late Cretaceous Mississippi Embayment and extend the temporal range of this genus back to the early Campanian. When tested within a global phylogenetic context, Peritresius is placed on the stem of Cheloniidae (Pan-Cheloniidae) along with Ctenochelys and Allopleuron hofmanni. The heavily vascularized and uniquely sculptured dermal elements of P. ornatus are interpreted here as potentially relating to thermoregulation and therefore may have been one of the key factors contributing to the survival of Peritresius into the Maastrichtian, a period of cooling when other lineages of Campanian marine turtles (e.g., Protostegids, Toxochelys, and Ctenochelys) went extinct.


Assuntos
Fósseis , Tartarugas/anatomia & histologia , Tartarugas/classificação , Alabama , Exoesqueleto/anatomia & histologia , Animais , Mississippi , Paleontologia
4.
PeerJ ; 6: e4229, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29333348

RESUMO

Decades of collecting from exposures of the Upper Cretaceous Tombigbee Sand Member of the Eutaw Formation and Mooreville Chalk in Alabama, USA has produced large numbers of isolated Cretalamna (sensu stricto) teeth. Many of these teeth had formerly been assigned to the extinct Late Cretaceous shark Cretalamna appendiculata (Agassiz, 1843), a taxon that is now considered largely restricted to the Turonian of Europe. Recent studies have shed light on the diversity of Late Cretaceous Cretalamna (s.s.) taxa, and here we recognize a new species from Alabama, Cretalamna bryanti. The teeth of C. bryanti sp. nov. appear aligned with the members of the Cretalamna borealis species group, but can be distinguished from these other species by a combination of the following: anterior teeth with a more pronounced and triangular lingual root protuberance, broader triangular cusp, and a taller root relative to the height of the crown; anteriorly situated lateroposterior teeth have a distally inclined or hooked main cusp and more than one pair of lateral cusplets; and lateroposterior teeth have a strong distally hooked main cusp and a root that is largely symmetrical in basal view. At present, C. bryanti sp. nov. is stratigraphically confined to the Santonian/Campanian Dicarinella asymetrica Sigal, 1952 and Globotruncanita elevata Brotzen, 1934 Planktonic Foraminiferal Zones within the Tombigbee Sand Member of the Eutaw Formation and Mooreville Chalk, and teeth have been collected from only four counties in central and western Alabama. The recognition of C. bryanti sp. nov. in Alabama adds to our knowledge on the diversity and distribution of Late Cretaceous otodontids in the region.

5.
PeerJ ; 2: e625, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25332848

RESUMO

The Otodontidae include some of the largest sharks to ever live in the world's oceans (i.e., Carcharocles megalodon). Here we report on Paleocene and Eocene occurrences of Otodus obliquus and Carcharocles auriculatus from Alabama, USA. Teeth of Otodus are rarely encountered in the Gulf Coastal Plain and this report is one of the first records for Alabama. Carcharocles auriculatus is more common in the Eocene deposits of Alabama, but its occurrence has been largely overlooked in the literature. We also refute the occurrence of the Oligocene Carcharocles angustidens in the state. Raised awareness and increased collecting of under-sampled geologic formations in Alabama will likely increase sample sizes of O. obliquus and C. auriculatus and also might unearth other otodontids, such as C. megalodon and C. chubutensis.

6.
PLoS One ; 5(5): e10552, 2010 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-20479893

RESUMO

BACKGROUND: As we know from modern species, nursery areas are essential shark habitats for vulnerable young. Nurseries are typically highly productive, shallow-water habitats that are characterized by the presence of juveniles and neonates. It has been suggested that in these areas, sharks can find ample food resources and protection from predators. Based on the fossil record, we know that the extinct Carcharocles megalodon was the biggest shark that ever lived. Previous proposed paleo-nursery areas for this species were based on the anecdotal presence of juvenile fossil teeth accompanied by fossil marine mammals. We now present the first definitive evidence of ancient nurseries for C. megalodon from the late Miocene of Panama, about 10 million years ago. METHODOLOGY/PRINCIPAL FINDINGS: We collected and measured fossil shark teeth of C. megalodon, within the highly productive, shallow marine Gatun Formation from the Miocene of Panama. Surprisingly, and in contrast to other fossil accumulations, the majority of the teeth from Gatun are very small. Here we compare the tooth sizes from the Gatun with specimens from different, but analogous localities. In addition we calculate the total length of the individuals found in Gatun. These comparisons and estimates suggest that the small size of Gatun's C. megalodon is neither related to a small population of this species nor the tooth position within the jaw. Thus, the individuals from Gatun were mostly juveniles and neonates, with estimated body lengths between 2 and 10.5 meters. CONCLUSIONS/SIGNIFICANCE: We propose that the Miocene Gatun Formation represents the first documented paleo-nursery area for C. megalodon from the Neotropics, and one of the few recorded in the fossil record for an extinct selachian. We therefore show that sharks have used nursery areas at least for 10 millions of years as an adaptive strategy during their life histories.


Assuntos
Ecossistema , Extinção Biológica , Tubarões/fisiologia , Animais , Fósseis , Geografia , Estágios do Ciclo de Vida , Modelos Biológicos , Panamá , Tubarões/anatomia & histologia , Tubarões/crescimento & desenvolvimento , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...