Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Am Soc Nephrol ; 29(5): 1536-1548, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29555830

RESUMO

Background Thrombospondin type 1 domain-containing 7A (THSD7A) has been identified as a pathogenic autoantigen in membranous nephropathy (MN). However, the THSD7A epitopes targeted by patient autoantibodies are unknown.Methods We performed an in silico analysis of the THSD7A multidomain structure, expressed the folded domains in HEK293 cells, and tested for domain reactivity with 31 serum samples from patients with THSD7A-associated MN using Western and native blotting. Immunogenicity of the antigen domains was further investigated by cDNA immunization of rabbits and mice.Results We characterized the extracellular topology of THSD7A as a tandem string of 21 thrombospondin type 1 domains. Overall, 28 serum samples (90%) recognized multiple epitope domains along the molecule. Detailed epitope mapping revealed that the complex consisting of the first and second N-terminal domains (amino acids 48-192) was recognized by 27 of 31 patient serum samples (87%). Serum recognizing one or two epitope domains showed lower anti-THSD7A antibody levels than serum recognizing three or more epitope domains. During follow-up, a loss of epitope recognition was observed in seven of 16 patients, and it was accompanied by decreasing antibody levels and remission of proteinuria. In four of 16 patients, epitope recognition patterns changed during follow-up. Notably, immunization experiments in rabbits and mice revealed that induced antibodies, like patient autoantibodies, preferentially bound to the most N-terminal domains of THSD7A.Conclusions Our data show that the immune response in THSD7A-associated MN is polyreactive and that autoantibodies predominantly target the most N-terminal part of THSD7A.


Assuntos
Antígenos de Superfície/imunologia , Autoanticorpos/sangue , Epitopos/imunologia , Glomerulonefrite Membranosa/imunologia , Proteínas de Membrana/imunologia , Domínios Proteicos/imunologia , Trombospondinas/imunologia , Idoso , Animais , Antígenos de Superfície/genética , Simulação por Computador , DNA Complementar/imunologia , Feminino , Glomerulonefrite Membranosa/complicações , Células HEK293 , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos , Pessoa de Meia-Idade , Proteinúria/etiologia , Coelhos , Trombospondinas/metabolismo
2.
Nat Microbiol ; 1(8): 16108, 2016 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-27573114

RESUMO

Clostridium difficile is the most common hospital acquired pathogen in the USA, and infection is, in many cases, fatal. Toxins A and B are its major virulence factors, but expression of a third toxin, known as C. difficile transferase (CDT), is increasingly common. An adenosine diphosphate (ADP)-ribosyltransferase that causes actin cytoskeletal disruption, CDT is typically produced by the major, hypervirulent strains and has been associated with more severe disease. Here, we show that CDT enhances the virulence of two PCR-ribotype 027 strains in mice. The toxin induces pathogenic host inflammation via a Toll-like receptor 2 (TLR2)-dependent pathway, resulting in the suppression of a protective host eosinophilic response. Finally, we show that restoration of TLR2-deficient eosinophils is sufficient for protection from a strain producing CDT. These findings offer an explanation for the enhanced virulence of CDT-expressing C. difficile and demonstrate a mechanism by which this binary toxin subverts the host immune response.


Assuntos
ADP Ribose Transferases/metabolismo , Proteínas de Bactérias/metabolismo , Clostridioides difficile/imunologia , Clostridioides difficile/patogenicidade , Infecções por Clostridium/patologia , Colo/imunologia , Eosinófilos/imunologia , Fatores de Virulência/metabolismo , Animais , Clostridioides difficile/classificação , Clostridioides difficile/genética , Infecções por Clostridium/microbiologia , Modelos Animais de Doenças , Camundongos , Ribotipagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...