Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Transl Res ; 270: 24-41, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38556110

RESUMO

Peripheral neuropathy (PN) is a severe and frequent complication of obesity, prediabetes, and type 2 diabetes characterized by progressive distal-to-proximal peripheral nerve degeneration. However, a comprehensive understanding of the mechanisms underlying PN, and whether these mechanisms change during PN progression, is currently lacking. Here, gene expression data were obtained from distal (sciatic nerve; SCN) and proximal (dorsal root ganglia; DRG) injury sites of a high-fat diet (HFD)-induced mouse model of obesity/prediabetes at early and late disease stages. Self-organizing map and differentially expressed gene analyses followed by pathway enrichment analysis identified genes and pathways altered across disease stage and injury site. Pathways related to immune response, inflammation, and glucose and lipid metabolism were consistently dysregulated with HFD-induced PN, irrespective of injury site. However, regulation of oxidative stress was unique to the SCN while dysregulated Hippo and Notch signaling were only observed in the DRG. The role of the immune system and inflammation in disease progression was supported by an increase in the percentage of immune cells in the SCN with PN progression. Finally, when comparing these data to transcriptomic signatures from human patients with PN, we observed conserved pathways related to metabolic dysregulation across species, highlighting the translational relevance of our mouse data. Our findings demonstrate that PN is associated with distinct site-specific molecular re-programming in the peripheral nervous system, identifying novel, clinically relevant therapeutic targets.


Assuntos
Gânglios Espinais , Perfilação da Expressão Gênica , Camundongos Endogâmicos C57BL , Estado Pré-Diabético , Nervo Isquiático , Animais , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Estado Pré-Diabético/metabolismo , Estado Pré-Diabético/genética , Estado Pré-Diabético/patologia , Masculino , Nervo Isquiático/metabolismo , Nervo Isquiático/lesões , Nervo Isquiático/patologia , Camundongos , Dieta Hiperlipídica/efeitos adversos , Transcriptoma , Humanos , Doenças do Sistema Nervoso Periférico/genética , Doenças do Sistema Nervoso Periférico/patologia , Doenças do Sistema Nervoso Periférico/metabolismo
2.
Dis Model Mech ; 16(10)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37791586

RESUMO

Diabetic kidney disease (DKD) and diabetic peripheral neuropathy (DPN) are common complications of type 1 (T1D) and type 2 (T2D) diabetes. However, the mechanisms underlying pathogenesis of these complications are unclear. In this study, we optimized a streptozotocin-induced db/+ murine model of T1D and compared it to our established db/db T2D mouse model of the same C57BLKS/J background. Glomeruli and sciatic nerve transcriptomic data from T1D and T2D mice were analyzed by self-organizing map and differential gene expression analysis. Consistent with prior literature, pathways related to immune function and inflammation were dysregulated in both complications in T1D and T2D mice. Gene-level analysis identified a high degree of concordance in shared differentially expressed genes (DEGs) in both complications and across diabetes type when using mice from the same cohort and genetic background. As we have previously shown a low concordance of shared DEGs in DPN when using mice from different cohorts and genetic backgrounds, this suggests that genetic background may influence diabetic complications. Collectively, these findings support the role of inflammation and indicate that genetic background is important in complications of both T1D and T2D.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Neuropatias Diabéticas , Humanos , Camundongos , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Nefropatias Diabéticas/genética , Modelos Animais de Doenças , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/genética , Transcriptoma/genética , Neuropatias Diabéticas/complicações , Perfilação da Expressão Gênica , Inflamação/complicações
3.
FASEB J ; 37(8): e23115, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37490006

RESUMO

Patients with type 2 diabetes often develop the microvascular complications of diabetic kidney disease (DKD) and diabetic peripheral neuropathy (DPN), which decrease quality of life and increase mortality. Unfortunately, treatment options for DKD and DPN are limited. Lifestyle interventions, such as changes to diet, have been proposed as non-pharmacological treatment options for preventing or improving DKD and DPN. However, there are no reported studies simultaneously evaluating the therapeutic efficacy of varying dietary interventions in a type 2 diabetes mouse model of both DKD and DPN. Therefore, we compared the efficacy of a 12-week regimen of three dietary interventions, low carbohydrate, caloric restriction, and alternate day fasting, for preventing complications in a db/db type 2 diabetes mouse model by performing metabolic, DKD, and DPN phenotyping. All three dietary interventions promoted weight loss, ameliorated glycemic status, and improved DKD, but did not impact percent fat mass and DPN. Multiple regression analysis identified a negative correlation between fat mass and motor nerve conduction velocity. Collectively, our data indicate that these three dietary interventions improved weight and glycemic status and alleviated DKD but not DPN. Moreover, diets that decrease fat mass may be a promising non-pharmacological approach to improve DPN in type 2 diabetes given the negative correlation between fat mass and motor nerve conduction velocity.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Animais , Camundongos , Qualidade de Vida , Restrição Calórica , Jejum , Camundongos Endogâmicos
4.
J Neurochem ; 166(2): 367-388, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37328915

RESUMO

Schwann cells (SCs) support peripheral nerves under homeostatic conditions, independent of myelination, and contribute to damage in prediabetic peripheral neuropathy (PN). Here, we used single-cell RNA sequencing to characterize the transcriptional profiles and intercellular communication of SCs in the nerve microenvironment using the high-fat diet-fed mouse, which mimics human prediabetes and neuropathy. We identified four major SC clusters, myelinating, nonmyelinating, immature, and repair in healthy and neuropathic nerves, in addition to a distinct cluster of nerve macrophages. Myelinating SCs acquired a unique transcriptional profile, beyond myelination, in response to metabolic stress. Mapping SC intercellular communication identified a shift in communication, centered on immune response and trophic support pathways, which primarily impacted nonmyelinating SCs. Validation analyses revealed that neuropathic SCs become pro-inflammatory and insulin resistant under prediabetic conditions. Overall, our study offers a unique resource for interrogating SC function, communication, and signaling in nerve pathophysiology to help inform SC-specific therapies.


Assuntos
Doenças do Sistema Nervoso Periférico , Estado Pré-Diabético , Camundongos , Humanos , Animais , Bainha de Mielina/metabolismo , Estado Pré-Diabético/genética , Estado Pré-Diabético/metabolismo , Análise da Expressão Gênica de Célula Única , Células de Schwann/metabolismo , Nervos Periféricos , Doenças do Sistema Nervoso Periférico/metabolismo
5.
Neuron ; 111(17): 2623-2641, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37263266

RESUMO

Diabetes prevalence continues to climb with the aging population. Type 2 diabetes (T2D), which constitutes most cases, is metabolically acquired. Diabetic peripheral neuropathy (DPN), the most common microvascular complication, is length-dependent damage to peripheral nerves. DPN pathogenesis is complex, but, at its core, it can be viewed as a state of impaired metabolism and bioenergetics failure operating against the backdrop of long peripheral nerve axons supported by glia. This unique peripheral nerve anatomy and the injury consequent to T2D underpins the distal-to-proximal symptomatology of DPN. Earlier work focused on the impact of hyperglycemia on nerve damage and bioenergetics failure, but recent evidence additionally implicates contributions from obesity and dyslipidemia. This review will cover peripheral nerve anatomy, bioenergetics, and glia-axon interactions, building the framework for understanding how hyperglycemia and dyslipidemia induce bioenergetics failure in DPN. DPN and painful DPN still lack disease-modifying therapies, and research on novel mechanism-based approaches is also covered.


Assuntos
Diabetes Mellitus Tipo 2 , Neuropatias Diabéticas , Dislipidemias , Hiperglicemia , Humanos , Idoso , Neuropatias Diabéticas/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Nervos Periféricos , Hiperglicemia/complicações , Hiperglicemia/metabolismo , Dislipidemias/complicações , Dislipidemias/metabolismo
6.
J Diabetes Complications ; 36(11): 108334, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36306721

RESUMO

Diabetic neuropathy (DN) remains arguably the most prevalent chronic complication in people with both type 1 and type 2 diabetes, including in youth, despite changes in the current standards of clinical care. Additionally, emerging evidence demonstrates that neuropathy affects a large proportion of people with undiagnosed diabetes and/or prediabetes, as well as those with obesity. Here we summarize the latest epidemiology of DN, recent findings regarding the pathophysiology of the disease, as well as current outcome measures for screening and diagnosis, in research and clinical settings. The authors discuss novel perspectives on the impact of social determinants of health in DN development and management, and the latest evidence on effective therapies, including pharmacological and nonpharmacological therapies for neuropathic pain. Throughout the publication, we identify knowledge gaps and the need for future funding to address these gaps, as well as needs to advocate for a personalized care approach to reduce the burden of DN and optimize quality of life for all affected individuals.


Assuntos
Diabetes Mellitus Tipo 2 , Neuropatias Diabéticas , Neuralgia , Adolescente , Humanos , Neuropatias Diabéticas/complicações , Neuropatias Diabéticas/diagnóstico , Neuropatias Diabéticas/epidemiologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/terapia , Qualidade de Vida , Programas de Rastreamento
7.
Antioxid Redox Signal ; 37(7-9): 613-630, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34861780

RESUMO

Significance: Reactive oxygen species (ROS) contribute to multiple aspects of peripheral nervous system (PNS) biology ranging from physiological processes (e.g., axonal outgrowth and regeneration) to pathophysiology (e.g., nerve degeneration). Although ROS are derived from multiple sources, NADPH oxidase (Nox) family members are dedicated to ROS generation. Noxs are expressed in the PNS, and their overexpression is associated with detrimental effects on nerve function and contributes, at least in part, to peripheral neuropathies. Recent Advances: Of the seven members, studies mostly focused on Nox1, Nox2, and Nox4, which are expressed in the PNS in a cell-specific manner. We have also recently identified human Nox5 in sural nerve biopsies. When maintained at homeostatic levels, Noxs regulate several aspects of peripheral nerve health, most notably neurite outgrowth and axonal regeneration following nerve lesion. While Nox2 and Nox4 dysregulation is a major source of oxidative stress in PNS disorders, including neuropathic pain and diabetic peripheral neuropathy, recent evidence also implicates Nox1 and Nox5. Critical Issues: Although there is compelling evidence for a direct role of Noxs on nerve function, little is known about their subcellular localization, intercellular regulation, and interaction. These, together with redox signaling, are considered crucial components of nerve redox status. In addition, the lack of isoform-specific inhibitors limits conclusions about the physiological role of Noxs in the PNS and their therapeutic potential in peripheral neuropathies. Future Directions: Future research using isoform-specific genetic and pharmacological approaches are therefore needed to better understand the significance of Nox enzymes in PNS (patho) physiology. Antioxid. Redox Signal. 37, 613-630.


Assuntos
NADPH Oxidases , Doenças do Sistema Nervoso Periférico , Humanos , NADPH Oxidase 1 , NADPH Oxidase 4/genética , NADPH Oxidases/metabolismo , Estresse Oxidativo , Sistema Nervoso Periférico/metabolismo , Espécies Reativas de Oxigênio
8.
Dis Model Mech ; 14(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34762126

RESUMO

Peripheral neuropathy (PN) is a severe complication that affects over 30% of prediabetic and 60% of type 2 diabetic (T2D) patients. The metabolic syndrome is increasingly recognized as a major driver of PN. However, basic and translational research is needed to understand the mechanisms that contribute to nerve damage. Rodent models of diet-induced obesity, prediabetes, T2D and PN closely resemble the human disease and have proven to be instrumental for the study of PN mechanisms. In this Perspective article, we focus on the development, neurological characterization and dietary fat considerations of diet-induced rodent models of PN. We highlight the importance of investigating sex differences and discuss some of the challenges in translation from bench to bedside, including recapitulating the progressive nature of human PN and modeling neuropathic pain. We emphasize that future research should overcome these challenges in the quest to better mimic human PN in animal models.


Assuntos
Síndrome Metabólica , Doenças do Sistema Nervoso Periférico , Estado Pré-Diabético , Animais , Dieta Hiperlipídica , Feminino , Humanos , Masculino , Síndrome Metabólica/complicações , Doenças do Sistema Nervoso Periférico/etiologia , Roedores
9.
J Transl Sci ; 7(1)2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33868719

RESUMO

Diabetes is a global healthcare problem associated with enormous healthcare and personal costs. Despite glucose lowering agents that control glycaemia, both type 1 (T1D) and type (T2D) diabetes patients often develop microvascular complications that increase morbidity and mortality. Current interventions rely on careful glycemic control and healthy lifestyle choices, but these are ineffective at reversing or completely preventing the major microvascular complications, diabetic peripheral neuropathy (DPN), diabetic retinopathy (DR), and diabetic kidney disease (DKD). Minocycline, a tetracycline antibiotic with anti-inflammatory and anti-apoptotic properties, has been proposed as a protective agent in diabetes. However, there are no reported studies evaluating the therapeutic efficacy of minocycline in T1D and T2D models for all microvascular complications (DPN, DR, and DKD). Therefore, we performed metabolic profiling in streptozotocin-induced T1D and db/db T2D models and compared the efficacy of minocycline in preventing complications to that of insulin and pioglitazone in both models. Minocycline partially ameliorated DR and DKD in T1D and T2D animals, but was less effective than insulin or pioglitazone, and failed to improve DPN in either model. These results suggest that minocycline is unlikely to improve outcomes beyond that achieved with current available therapies in patients with T1D or T2D associated microvascular complications.

10.
FASEB J ; 35(5): e21467, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33788970

RESUMO

Diabetic kidney disease (DKD) and diabetic peripheral neuropathy (DPN) are two common diabetic complications. However, their pathogenesis remains elusive and current therapies are only modestly effective. We evaluated genome-wide expression to identify pathways involved in DKD and DPN progression in db/db eNOS-/- mice receiving renin-angiotensin-aldosterone system (RAS)-blocking drugs to mimic the current standard of care for DKD patients. Diabetes and eNOS deletion worsened DKD, which improved with RAS treatment. Diabetes also induced DPN, which was not affected by eNOS deletion or RAS blockade. Given the multiple factors affecting DKD and the graded differences in disease severity across mouse groups, an automatic data analysis method, SOM, or self-organizing map was used to elucidate glomerular transcriptional changes associated with DKD, whereas pairwise bioinformatic analysis was used for DPN. These analyses revealed that enhanced gene expression in several pro-inflammatory networks and reduced expression of development genes correlated with worsening DKD. Although RAS treatment ameliorated the nephropathy phenotype, it did not alter the more abnormal gene expression changes in kidney. Moreover, RAS exacerbated expression of genes related to inflammation and oxidant generation in peripheral nerves. The graded increase in inflammatory gene expression and decrease in development gene expression with DKD progression underline the potentially important role of these pathways in DKD pathogenesis. Since RAS blockers worsened this gene expression pattern in both DKD and DPN, it may partly explain the inadequate therapeutic efficacy of such blockers.


Assuntos
Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/patologia , Neuropatias Diabéticas/patologia , Óxido Nítrico Sintase Tipo III/fisiologia , Transcriptoma , Proteínas ras/antagonistas & inibidores , Animais , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Neuropatias Diabéticas/etiologia , Neuropatias Diabéticas/metabolismo , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
11.
Biology (Basel) ; 9(11)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105667

RESUMO

Microvascular complications account for the significant morbidity associated with diabetes. Despite tight glycemic control, disease risk remains especially in type 2 diabetes (T2D) patients and no therapy fully prevents nerve, retinal, or renal damage in type 1 diabetes (T1D) or T2D. Therefore, new antidiabetic drug classes are being evaluated for the treatment of microvascular complications. We investigated the effect of empagliflozin (EMPA), an inhibitor of the sodium/glucose cotransporter 2 (SGLT2), on diabetic neuropathy (DPN), retinopathy (DR), and kidney disease (DKD) in streptozotocin-induced T1D and db/db T2D mouse models. EMPA lowered blood glycemia in T1D and T2D models. However, it did not ameliorate any microvascular complications in the T2D model, which was unexpected, given the protective effect of SGLT2 inhibitors on DKD progression in T2D subjects. Although EMPA did not improve DKD in the T1D model, it had a potential modest effect on DR measures and favorably impacted DPN as well as systemic oxidative stress. These results support the concept that glucose-centric treatments are more effective for DPN in T1D versus T2D. This is the first study that provides an evaluation of EMPA treatment on all microvascular complications in a side-by-side comparison in T1D and T2D models.

12.
Clin Epigenetics ; 12(1): 130, 2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32854766

RESUMO

An amendment to this paper has been published and can be accessed via the original article.

13.
Clin Epigenetics ; 12(1): 123, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32787975

RESUMO

BACKGROUND: Diabetic peripheral neuropathy (DPN) is the most common complication of type 2 diabetes (T2D). Although the cellular and molecular mechanisms of DPN are poorly understood, we and others have shown that altered gene expression and DNA methylation are implicated in disease pathogenesis. However, how DNA methylation might functionally impact gene expression and contribute to nerve damage remains unclear. Here, we analyzed genome-wide transcriptomic and methylomic profiles of sural nerves from T2D patients with DPN. RESULTS: Unbiased clustering of transcriptomics data separated samples into groups, which correlated with HbA1c levels. Accordingly, we found 998 differentially expressed genes (DEGs) and 929 differentially methylated genes (DMGs) between the groups with the highest and lowest HbA1c levels. Functional enrichment analysis revealed that DEGs and DMGs were enriched for pathways known to play a role in DPN, including those related to the immune system, extracellular matrix (ECM), and axon guidance. To understand the interaction between the transcriptome and methylome in DPN, we performed an integrated analysis of the overlapping genes between DEGs and DMGs. Integrated functional and network analysis identified genes and pathways modulating functions such as immune response, ECM regulation, and PI3K-Akt signaling. CONCLUSION: These results suggest for the first time that DNA methylation is a mechanism regulating gene expression in DPN. Overall, DPN patients with high HbA1c have distinct alterations in sural nerve DNA methylome and transcriptome, suggesting that optimal glycemic control in DPN patients is an important factor in maintaining epigenetic homeostasis and nerve function.


Assuntos
Metilação de DNA/genética , Neuropatias Diabéticas/genética , Epigênese Genética/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Análise por Conglomerados , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
14.
Diabetes ; 69(3): 448-464, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31882567

RESUMO

Diabetes triggers peripheral nerve alterations at a structural and functional level, collectively referred to as diabetic peripheral neuropathy (DPN). This work highlights the role of the liver X receptor (LXR) signaling pathway and the cross talk with the reactive oxygen species (ROS)-producing enzyme NADPH oxidase-4 (Nox4) in the pathogenesis of DPN. Using type 1 diabetic (T1DM) mouse models together with cultured Schwann cells (SCs) and skin biopsies from patients with type 2 diabetes (T2DM), we revealed the implication of LXR and Nox4 in the pathophysiology of DPN. T1DM animals exhibit neurophysiological defects and sensorimotor abnormalities paralleled by defective peripheral myelin gene expression. These alterations were concomitant with a significant reduction in LXR expression and increase in Nox4 expression and activity in SCs and peripheral nerves, which were further verified in skin biopsies of patients with T2DM. Moreover, targeted activation of LXR or specific inhibition of Nox4 in vivo and in vitro to attenuate diabetes-induced ROS production in SCs and peripheral nerves reverses functional alteration of the peripheral nerves and restores the homeostatic profiles of MPZ and PMP22. Taken together, our findings are the first to identify novel, key mediators in the pathogenesis of DPN and suggest that targeting LXR/Nox4 axis is a promising therapeutic approach.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Neuropatias Diabéticas/metabolismo , Receptores X do Fígado/metabolismo , NADPH Oxidase 4/metabolismo , Células de Schwann/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 2/complicações , Neuropatias Diabéticas/etiologia , Feminino , Humanos , Hidrocarbonetos Fluorados/farmacologia , Receptores X do Fígado/agonistas , Masculino , Camundongos , Proteínas da Mielina/genética , NADPH Oxidase 4/antagonistas & inibidores , Pirazóis/farmacologia , Pirazolonas , Piridinas/farmacologia , Piridonas , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Sulfonamidas/farmacologia
15.
Dis Model Mech ; 13(2)2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31822493

RESUMO

Peripheral neuropathy (PN) is a complication of prediabetes and type 2 diabetes (T2D). Increasing evidence suggests that factors besides hyperglycaemia contribute to PN development, including dyslipidaemia. The objective of this study was to determine differential lipid classes and altered gene expression profiles in prediabetes and T2D mouse models in order to identify the dysregulated pathways in PN. Here, we used high-fat diet (HFD)-induced prediabetes and HFD/streptozotocin (STZ)-induced T2D mouse models that develop PN. These models were compared to HFD and HFD-STZ mice that were subjected to dietary reversal. Both untargeted and targeted lipidomic profiling, and gene expression profiling were performed on sciatic nerves. Lipidomic and transcriptomic profiles were then integrated using complex correlation analyses, and biological meaning was inferred from known lipid-gene interactions in the literature. We found an increase in triglycerides (TGs) containing saturated fatty acids. In parallel, transcriptomic analysis confirmed the dysregulation of lipid pathways. Integration of lipidomic and transcriptomic analyses identified an increase in diacylglycerol acyltransferase 2 (DGAT2), the enzyme required for the last and committed step in TG synthesis. Increased DGAT2 expression was present not only in the murine models but also in sural nerve biopsies from hyperlipidaemic diabetic patients with PN. Collectively, these findings support the hypothesis that abnormal nerve-lipid signalling is an important factor in peripheral nerve dysfunction in both prediabetes and T2D.This article has an associated First Person interview with the joint first authors of the paper.


Assuntos
Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Perfilação da Expressão Gênica , Lipidômica , Tecido Nervoso/metabolismo , Estado Pré-Diabético/genética , Estado Pré-Diabético/metabolismo , Triglicerídeos/metabolismo , Animais , Bases de Dados Genéticas , Dieta Hiperlipídica , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Redes Reguladoras de Genes , Humanos , Hiperlipidemias/genética , Metabolismo dos Lipídeos/genética , Masculino , Camundongos Endogâmicos C57BL , Doenças do Sistema Nervoso Periférico/genética , Doenças do Sistema Nervoso Periférico/metabolismo , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia , Estreptozocina
16.
Sci Rep ; 8(1): 2524, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29410501

RESUMO

Reactive oxygen species (ROS) modify proteins and lipids leading to deleterious outcomes. Thus, maintaining their homeostatic levels is vital. This study highlights the endogenous role of LXRs (LXRα and ß) in the regulation of oxidative stress in peripheral nerves. We report that the genetic ablation of both LXR isoforms in mice (LXRdKO) provokes significant locomotor defects correlated with enhanced anion superoxide production, lipid oxidization and protein carbonylation in the sciatic nerves despite the activation of Nrf2-dependant antioxidant response. Interestingly, the reactive oxygen species scavenger N-acetylcysteine counteracts behavioral, electrophysical, ultrastructural and biochemical alterations in LXRdKO mice. Furthermore, Schwann cells in culture pretreated with LXR agonist, TO901317, exhibit improved defenses against oxidative stress generated by tert-butyl hydroperoxide, implying that LXRs play an important role in maintaining the redox homeostasis in the peripheral nervous system. Thus, LXR activation could be a promising strategy to protect from alteration of peripheral myelin resulting from a disturbance of redox homeostasis in Schwann cell.


Assuntos
Homeostase , Receptores X do Fígado/fisiologia , Bainha de Mielina/metabolismo , Estresse Oxidativo , Células de Schwann , Nervo Isquiático , Animais , Linhagem Celular , Hidrocarbonetos Fluorados/química , Metabolismo dos Lipídeos , Receptores X do Fígado/antagonistas & inibidores , Receptores X do Fígado/genética , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Carbonilação Proteica , Espécies Reativas de Oxigênio/metabolismo , Células de Schwann/citologia , Células de Schwann/metabolismo , Nervo Isquiático/citologia , Nervo Isquiático/metabolismo , Sulfonamidas/química , terc-Butil Hidroperóxido/química
17.
Med Hypotheses ; 108: 69-80, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29055405

RESUMO

Traumatic brain injury is a detrimental medical condition particularly when accompanied by diabetes. There are several comorbidities going along with diabetes including, but not limited to, kidney failure, obesity, coronary artery disease, peripheral vascular disease, hypertension, stroke, neuropathies and amputations. Unlike diabetes type 1, diabetes type 2 is more common in adults who simultaneously suffer from other comorbid conditions making them susceptible to repetitive fall incidents and sustaining head trauma. The resulting brain insult exacerbates current psychiatric disorders such as depression and anxiety, which, in turn, increases the risk of sustaining further brain traumas. The relationship between diabetes, traumatic brain injury and psychiatric health constitutes a triad forming a non-reversible vicious cycle. At the proteomic and psychiatric levels, cellular, molecular and behavioral alterations have been reported with the induction of non-traumatic brain injury in diabetic models such as stroke. However, research into traumatic brain injury has not been systematically investigated. Thus, in cases of diabetic neuropathy complicated with traumatic brain injury, utilizing fine structural and analytical techniques allows the identification of key biological markers that can then be used as innovative diagnostics as well as novel therapeutic targets in an attempt to treat diabetes and its sequelae especially those arising from repetitive mild brain trauma.


Assuntos
Lesões Encefálicas Traumáticas/fisiopatologia , Neuropatias Diabéticas/fisiopatologia , Transtornos Mentais/fisiopatologia , Animais , Transtornos de Ansiedade , Concussão Encefálica , Lesões Encefálicas Traumáticas/complicações , Comorbidade , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 2/complicações , Neuropatias Diabéticas/complicações , Feminino , Humanos , Masculino , Transtornos Mentais/complicações , Camundongos , Modelos Teóricos , Testes Neuropsicológicos , Estresse Oxidativo , Doenças do Sistema Nervoso Periférico/fisiopatologia , Proteômica , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...