Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
2.
Regul Toxicol Pharmacol ; 98: 209-214, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30056248

RESUMO

In the context of a larger testing programme that aimed at assessing the skin sensitisation potential of functional polysiloxanes and silanes, this investigation complements the available in vitro and in vivo data with data in the SENS-IS assay, a human in vitro 3D skin-based model. The SENS-IS assay allowed testing of all functional polysiloxanes and silanes without any solubility issues or limitations related to the multiconstituent nature of the commercial grade test substances. It appeared to encompass skin metabolism, a factor which we considered important for the skin sensitisation hazard assessment particularly of aminofunctionalised siloxanes and silanes. These three technical aspects posed significant challenges in the first part of the in vitro programme with the OECD-validated in vitro assays. The SENS-IS assay delivered promising results for this group of substances. On its own, it was the best performing model, as it did not pose any technical issues with the assay and it matched all in vivo outcomes. Considering its performance and avoidance of any limitations due to lack of solubility or chemical composition aspects, we concluded that the SENS-IS assay to be a suitable starting point for an integrated testing strategy for skin sensitisation for the group of functional polysiloxanes and silanes.


Assuntos
Alérgenos/toxicidade , Bioensaio , Haptenos/toxicidade , Irritantes/toxicidade , Silanos/toxicidade , Siloxanas/toxicidade , Dermatite Alérgica de Contato , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo
3.
Regul Toxicol Pharmacol ; 90: 262-276, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28958912

RESUMO

The applicability of the Direct Peptide Reactivity Assay (DPRA), the KeratinoSens™ assay and the human cell line activation test (OECD Test Guidelines 442C, 442D, 442E) in predicting the skin sensitising potential of nine lipid (bio)chemicals was investigated. The results from the three assays were integrated using a published prediction model (PM), by which skin sensitisation is predicted if at least two of the three assays yield positive results. Of the eight test substances that were classified as non-sensitisers using available Guinea Pig Maximisation Test (GPMT) data, only five were correctly predicted as 'negative' in the PM. (However, only two were correctly predicted as 'negative' in the murine Local Lymph Node Assay.) The one lipid (bio)chemical that tested positive in the GPMT was also positive applying the PM. Based upon the outcome of the present study, lipid (bio)chemicals with a log Kow up to 7-8 appear amenable to the three assays. However, solubility problems, that were not evident initially, affected the performance of the DPRA. Further investigations are merited to address the conclusiveness of negative test results with concurrent lack of cytotoxicity in the in vitro assays, to evaluate if poorly soluble substances come into contact with the cells.


Assuntos
Alérgenos/imunologia , Alternativas aos Testes com Animais/métodos , Bioensaio/métodos , Dermatite Alérgica de Contato/etiologia , Lipídeos/imunologia , Animais , Linhagem Celular , Cobaias , Humanos , Técnicas In Vitro/métodos , Lipídeos/química , Camundongos , Modelos Biológicos , Medição de Risco , Pele/efeitos dos fármacos , Pele/imunologia , Testes Cutâneos/métodos , Solubilidade , Especificidade da Espécie
4.
Regul Toxicol Pharmacol ; 84: 64-76, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28017767

RESUMO

The skin sensitization potential of chemicals has traditionally been evaluated in vivo according to OECD testing guidelines in guinea pigs or the mouse local lymph node assay. There has lately been a great emphasis on establishing in vitro test methods reflecting the key biological events in the adverse outcome pathway (AOP) for skin sensitization as published by the OECD. Against this background, a group of 8 polysiloxanes and silanes, seven of them aminofunctionalised, for which in vivo data were already available, has been tested in vitro in the direct peptide reactivity assay (DPRA), the KeratinoSens™ and the human cell line activation test (h-CLAT) and in the modified myeloid U937 skin sensitization test (mMUSST) as far as technically feasible. The main objective of the programme was to determine the utility of these systems for this heterogeneous group of silicone-based substances, recognizing that some substances are outside the assays applicability domains. The presented data provided some interesting mechanistical insights into the performance of these assays for functionalised siloxanes and silanes. The data also allow for a preliminary evaluation of proposed integrated testing strategies (ITS) to determine the skin sensitization potential of chemicals which were not considered in the training sets of the respective ITS.


Assuntos
Bioensaio , Células Dendríticas/efeitos dos fármacos , Dermatite Alérgica de Contato/etiologia , Irritantes/toxicidade , Queratinócitos/efeitos dos fármacos , Silanos/toxicidade , Siloxanas/toxicidade , Testes de Irritação da Pele/métodos , Alternativas aos Testes com Animais , Animais , Células Dendríticas/imunologia , Dermatite Alérgica de Contato/genética , Dermatite Alérgica de Contato/imunologia , Dermatite Alérgica de Contato/metabolismo , Estudos de Viabilidade , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Cobaias , Humanos , Queratinócitos/metabolismo , Ensaio Local de Linfonodo , Camundongos Endogâmicos CBA , Medição de Risco , Células U937
5.
Regul Toxicol Pharmacol ; 67(3): 531-5, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24140884

RESUMO

In a previous EPAA-Cefic LRI workshop in 2011, issues surrounding the use and interpretation of results from the local lymph node assay were addressed. At the beginning of 2013 a second joint workshop focused greater attention on the opportunities to make use of non-animal test data, not least since a number of in vitro assays have progressed to an advanced position in terms of their formal validation. It is already recognised that information produced from non-animal assays can be used in regulatory decision-making, notably in terms of classifying a substance as a skin sensitiser. The evolution into a full replacement for hazard identification, where the decision is not to classify, requires the generation of confidence in the in vitro alternative, e.g. via formal validation, the existence of peer reviewed publications and the knowledge that the assay(s) are founded on key elements of the Adverse Outcome Pathway for skin sensitisation. It is foreseen that the validated in vitro assays and relevant QSAR models can be organised into formal testing strategies to be applied for regulatory purposes by the industry. To facilitate progress, the European Partnership for Alternative Approaches to animal testing (EPAA) provided the platform for cross-industry and regulatory dialogue, enabling an essential and open debate on the acceptability of an in vitro based integrated strategy. Based on these considerations, a follow up activity was agreed upon to explore an example of an Integrated Testing Strategy for skin sensitisation hazard identification purposes in the context of REACH submissions.


Assuntos
Alternativas aos Testes com Animais , Dermatite Alérgica de Contato/etiologia , Regulamentação Governamental , Substâncias Perigosas/toxicidade , Pele/efeitos dos fármacos , Alternativas aos Testes com Animais/legislação & jurisprudência , Alternativas aos Testes com Animais/métodos , Alternativas aos Testes com Animais/tendências , Animais , Congressos como Assunto , União Europeia , Substâncias Perigosas/química , Humanos , Cooperação Internacional
6.
Regul Toxicol Pharmacol ; 64(2): 305-14, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22981813

RESUMO

Discordant results were observed when testing five prototype polyfunctional silicone materials for skin sensitization potential in the murine local lymph node assay (LLNA) and in the guinea pig maximization test (GPMT). While all five silicone materials were consistently negative in the GPMT, the testing in the LLNA revealed weak to moderate skin sensitisation potential for four of the five test materials. Neither study quality nor other known chemical factors could explain these findings. Further analysis did not provide sufficient evidence for a link between the LLNA responses and the irritancy of the test substances. Only in the case of one of the test materials, the occurrence of an excessive level of irritation could be linked to the positive LLNA result. Considering all existing information including physico-chemical and structure activity and animal data as well as existing human experience from silicone exposures at the workplace or their use in cosmetic products, the weight of evidence suggests that none of the examined silicone materials represents a significant skin sensitization hazard to humans. The suitability of the LLNA appears questionable for this class of materials. In case of any additional data needs for other or new silicone materials, the skin sensitization testing strategy will require careful evaluation and will need to be set up on a case by case basis.


Assuntos
Alérgenos/toxicidade , Dermatite Alérgica de Contato/etiologia , Silicones/toxicidade , Animais , Feminino , Cobaias , Camundongos , Camundongos Endogâmicos CBA , Medição de Risco , Testes Cutâneos
7.
Regul Toxicol Pharmacol ; 60(3): 389-400, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21645576

RESUMO

An integral part of hazard and safety assessments is the estimation of a chemical's potential to cause skin sensitization. Currently, only animal tests (OECD 406 and 429) are accepted in a regulatory context. Nonanimal test methods are being developed and formally validated. In order to gain more insight into the responses induced by eight exemplary surfactants, a battery of in vivo and in vitro tests were conducted using the same batch of chemicals. In general, the surfactants were negative in the GPMT, KeratinoSens and hCLAT assays and none formed covalent adducts with test peptides. In contrast, all but one was positive in the LLNA. Most were rated as being irritants by the EpiSkin assay with the additional endpoint, IL1-alpha. The weight of evidence based on this comprehensive testing indicates that, with one exception, they are non-sensitizing skin irritants, confirming that the LLNA tends to overestimate the sensitization potential of surfactants. As results obtained from LLNAs are considered as the gold standard for the development of new nonanimal alternative test methods, results such as these highlight the necessity to carefully evaluate the applicability domains of test methods in order to develop reliable nonanimal alternative testing strategies for sensitization testing.


Assuntos
Irritantes/farmacologia , Ensaio Local de Linfonodo , Pele/efeitos dos fármacos , Tensoativos/farmacologia , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Glucosídeos/metabolismo , Cobaias , Humanos , Interleucina-1alfa/imunologia , Interleucina-1alfa/metabolismo , Irritantes/toxicidade , Camundongos , Camundongos Endogâmicos CBA , Peptídeos/química , Relação Quantitativa Estrutura-Atividade , Medição de Risco/métodos , Testes de Irritação da Pele/métodos , Estatística como Assunto/métodos , Tensoativos/toxicidade
8.
Regul Toxicol Pharmacol ; 58(2): 301-7, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20599457

RESUMO

The Local Lymph Node Assay (LLNA) is the preferred test for the identification of skin-sensitizing potentials of chemicals in Europe and is also the first choice method within REACH. In the formal validation, only a very few surfactant chemicals were evaluated and SDS was identified as a false positive. In this study, 10 nonionic sugar lipid surfactants were tested in an LLNA, guinea pig maximization test (GPMT) and human repeated insult patch test. Of the 10 surfactants tested in the LLNA, 5 showed stimulation indices above 3.0. Three of five positive reactions were concomitant with signs of skin irritation indicated by an increase in ear thickness. In the GPMT, all test products were classified as nonsensitizers. In human volunteers, no skin reactions suggestive of sensitization were reported. In conclusion, these results are indicative of the LLNA overestimating sensitization potentials for this category of chemicals. This may in part be due to irritant effects generated by these surfactants. Until suitable nonanimal alternative tests obtain regulatory acceptance, use of other tests, e.g. GPMTs, may in cases be justified. Results such as these need be taken into account when developing nonanimal alternative methods to ensure reliable data sets for method validation purposes.


Assuntos
Ensaio Local de Linfonodo , Testes de Irritação da Pele/métodos , Tensoativos/toxicidade , Animais , Cobaias , Humanos , Camundongos , Camundongos Endogâmicos CBA , Testes do Emplastro/métodos , Testes Cutâneos/métodos , Especificidade da Espécie , Tensoativos/química
9.
Regul Toxicol Pharmacol ; 55(1): 90-6, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19523501

RESUMO

The local lymph node assay (LLNA) is the assay of choice in European regulatory toxicology. As with other toxicology/sensitisation assays, it has a potential for false results, the anionic surfactant sodium lauryl sulphate (SLS) representing a classic example. In the work reported here, examples of false positives in the LLNA are compared to published "benchmarks" such as SLS. Clear false positives (e.g. oleic acid) are also contrasted with examples where data interpretation is more challenging. As the LLNA will be applicable to >30,000 chemicals under REACH, and in the light of animal welfare considerations to do no more than the absolute minimum of animal testing, results from a single LLNA often represent the only available data on sensitisation. This reinforces the need to ensure data from this assay are interpreted intelligently, using scientific analysis of results and considering the weight of evidence, before decisions are made on which substances should be classified as representing a skin sensitisation hazard. In chemical classes where the LLNA has been shown to be an inappropriate assay other standardised methods (e.g. the Buehler or Magnusson and Kligman guinea pig tests [OECD 406]) should be employed as the first choice assays.


Assuntos
Alérgenos/toxicidade , Substâncias Perigosas/toxicidade , Ensaio Local de Linfonodo , Medição de Risco/métodos , Testes de Toxicidade/métodos , Interpretação Estatística de Dados , Exposição Ambiental , Reações Falso-Negativas , Reações Falso-Positivas , Humanos , Pele/efeitos dos fármacos , Testes de Toxicidade/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...