Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Brain Sci ; 11(8)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34439645

RESUMO

Biomarkers to detect Alzheimer's disease (AD) would enable patients to gain access to appropriate services and may facilitate the development of new therapies. Given the large numbers of people affected by AD, there is a need for a low-cost, easy to use method to detect AD patients. Potentially, the electroencephalogram (EEG) can play a valuable role in this, but at present no single EEG biomarker is robust enough for use in practice. This study aims to provide a methodological framework for the development of robust EEG biomarkers to detect AD with a clinically acceptable performance by exploiting the combined strengths of key biomarkers. A large number of existing and novel EEG biomarkers associated with slowing of EEG, reduction in EEG complexity and decrease in EEG connectivity were investigated. Support vector machine and linear discriminate analysis methods were used to find the best combination of the EEG biomarkers to detect AD with significant performance. A total of 325,567 EEG biomarkers were investigated, and a panel of six biomarkers was identified and used to create a diagnostic model with high performance (≥85% for sensitivity and 100% for specificity).

2.
IEEE J Biomed Health Inform ; 25(1): 218-226, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32340968

RESUMO

The successful development of amyloid-based biomarkers and tests for Alzheimer's disease (AD) represents an important milestone in AD diagnosis. However, two major limitations remain. Amyloid-based diagnostic biomarkers and tests provide limited information about the disease process and they are unable to identify individuals with the disease before significant amyloid-beta accumulation in the brain develops. The objective in this study is to develop a method to identify potential blood-based non-amyloid biomarkers for early AD detection. The use of blood is attractive because it is accessible and relatively inexpensive. Our method is mainly based on machine learning (ML) techniques (support vector machines in particular) because of their ability to create multivariable models by learning patterns from complex data. Using novel feature selection and evaluation modalities, we identified 5 novel panels of non-amyloid proteins with the potential to serve as biomarkers of early AD. In particular, we found that the combination of A2M, ApoE, BNP, Eot3, RAGE and SGOT may be a key biomarker profile of early disease. Disease detection models based on the identified panels achieved sensitivity (SN) > 80%, specificity (SP) > 70%, and area under receiver operating curve (AUC) of at least 0.80 at prodromal stage (with higher performance at later stages) of the disease. Existing ML models performed poorly in comparison at this stage of the disease, suggesting that the underlying protein panels may not be suitable for early disease detection. Our results demonstrate the feasibility of early detection of AD using non-amyloid based biomarkers.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides , Biomarcadores , Proteínas Sanguíneas , Diagnóstico Precoce , Humanos , Máquina de Vetores de Suporte
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 5523-5526, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33019230

RESUMO

Early detection of Alzheimer's disease (AD) is of vital importance in the development of disease-modifying therapies. This necessitates the use of early pathological indicators of the disease such as amyloid abnormality to identify individuals at early disease stages where intervention is likely to be most effective. Recent evidence suggests that cerebrospinal fluid (CSF) amyloid ß1-42 (Aß42) level may indicate AD risk earlier compared to amyloid positron emission tomography (PET). However, the method of collecting CSF is invasive. Blood-based biomarkers indicative of CSF Aß42 status may remedy this limitation as blood collection is minimally invasive and inexpensive. In this study, we show that APOE4 genotype and blood markers comprising EOT3, APOC1, CGA, and Aß42 robustly predict CSF Aß42 with high classification performance (0.84 AUC, 0.82 sensitivity, 0.62 specificity, 0.81 PPV and 0.64 NPV) using machine learning approach. Due to the method employed in the biomarker search, the identified biomarker signature maintained high performance in more than a single machine learning algorithm, indicating potential to generalize well. A minimally invasive and cost-effective solution to detecting amyloid abnormality such as proposed in this study may be used as a first step in a multi-stage diagnostic workup to facilitate enrichment of clinical trials and population-based screening.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Doença de Alzheimer/diagnóstico , Amiloide , Apolipoproteína E4 , Humanos , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...