Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 42(10): 5053-5071, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38764131

RESUMO

The synthesis of two new hexahydroisoquinoline-4-carbonitrile derivatives (3a and 3b) is reported along with spectroscopic data and their crystal structures. In compound 3a, the intramolecular O-H···O hydrogen bond constraints the acetyl and hydroxyl groups to be syn. In the crystal, inversion dimers are generated by C-H···O hydrogen bonds and are connected into layers parallel to (10-1) by additional C-H···O hydrogen bonds. The layers are stacked with Cl···S contacts 0.17 Å less than the sum of the respective van der Waals radii. The conformation of the compound 3b is partially determined by the intramolecular O-H···O hydrogen bond. A puckering analysis of the tetrahydroisoquinoline unit was performed. In the crystal, O-H···O and C-H···O hydrogen bonds together with C-H···π(ring) interactions form layers parallel to (01-1) which pack with normal van der Waals interactions. To understand the binding efficiency and stability of the title molecules, molecular docking, and 100 ns dynamic simulation analyses were performed with CDK5A1. To rationalize their structure-activity relationship(s), a DFT study at the B3LYP/6-311++G** theoretical level was also done. The 3D Hirshfled surfaces were also taken to investigate the crystal packings of both compounds. In addition, their ADMET properties were explored.Communicated by Ramaswamy H. Sarma.


Assuntos
Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Cristalografia por Raios X , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/química , Quinases Ciclina-Dependentes/metabolismo , Tetra-Hidroisoquinolinas/química , Tetra-Hidroisoquinolinas/farmacologia , Conformação Molecular , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Modelos Moleculares , Nitrilas/química , Simulação de Dinâmica Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Humanos
2.
RSC Adv ; 14(16): 11557-11569, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38601708

RESUMO

Here we present the magnetic properties of two cobalt complexes formulated as: [Co(SCN)2(L)2] (1) and (H2L)2[Co(SCN)4]·H2O (2) (L = 1-(2-pyrimidyl)piperazine). The two compounds contain isolated tetrahedral CoII complexes with important intermolecular interactions that lead to the presence of a canted antiferromagnetic order below 11.5 and 10.0 K, with coercive fields at 2 K of 38 and 68 mT, respectively. Theoretical calculations have been used to explain this behaviour. Hirshfeld surface analysis shows the presence of strong intermolecular interactions in both compounds. The crystal geometries were used for geometry optimization using the DFT method. From the topological properties, electrostatic potential maps and molecular orbital analysis, information about the noncovalent interaction and chemical reactivity was obtained.

3.
J Biomol Struct Dyn ; : 1-19, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38305762

RESUMO

New vanillin derivatives, namely, ethyl (4-formyl-2-methoxyphenoxy)acetate (2a) and 2-(4-formyl-2-methoxyphenoxy)-N-phenylacetamide (2b), respectively, were synthesized and characterized by NMR (1H and 13C), IR, mass spectra and confirmed by single-crystal X-ray analysis. Hirshfeld surface (HS) analysis was performed to probe intra- and intermolecular interactions and surface reactivity. 2D fingerprint plots (FP) were used to study the nature and percentage contribution of intermolecular interactions leading to the formation of the crystal unit. Density functional theory (DFT) simulations were used to obtain the electronic structure and reactivity of the new molecules. Natural population analysis (NPA) and frontier molecular orbital (FMO) calculations reveal significant charge transfer and a reduced HOMO-LUMO gap up to 4.34 eV for 2b. Bader's quantum theory of atoms in molecules (QTAIM) study is utilized to understand the surface topological and bonding nature of 2a and 2b. The performed molecular electrostatic potential (MESP) and density of states (DOS) study further suggest sites likely to be attractive to incoming reagents. At the same time, hyperpolarizability (ßo) is used to characterize the nonlinear optical properties, and TD-DFT study shows the excitation energy and absorption behavior. In silico studies were performed, including docking, binding free energies (MMBGSA) and molecular dynamics simulations. Compounds 2a and 2b were docked with RdRp of SARS-Cov-2, and the MMBGSA for 2a and 2b were -30.70 and -28.47 kcal/mol, respectively, while MD simulation showed the stability of protein-ligand complexes.Communicated by Ramaswamy H. Sarma.

4.
J Biomol Struct Dyn ; : 1-19, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38385483

RESUMO

Quinoxaline represents one of the most important classes of heterocyclic compounds, which have exhibited a wide range of biological activities and industrial importance in many different fields. In this regard, we have synthetized two new quinoxaline derivatives. Their structures were confirmed by single-crystal X-ray analysis. The compounds show potent activity against adenosine receptors A2AAR based on structural activity relationship studies. Further molecular docking, molecular dynamics, ADMET analysis, and DFT (density functional theory) calculations were performed to understand the titled compound's future drug candidacy. DFT computations confirmed the good stability of the synthesized compounds, as evidenced by the optimized molecular geometry, HOMO-LUMO energy gap, and intermolecular interactions. NBO analysis confirmed intermolecular interactions mediated by lone pair, bonding, and anti-bonding orbitals. All DFT findings were consistent with experimental results, indicating that the synthesized molecules are highly stable. These findings suggest that the synthesized compounds are promising candidates for further development as drugs for the treatment of A2AAR-related diseases.Communicated by Ramaswamy H. Sarma.

5.
J Biomol Struct Dyn ; : 1-20, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38321917

RESUMO

Quinoxaline derivatives are an important class of heterocyclic compounds in which N replaces one or more carbon atoms of the naphthalene ring and exhibit a wide spectrum of biological activities and therapeutic applications. As a result, we were encouraged to explore a new synthetic approach to quinoxaline derivatives. In this work, we synthesized two new derivatives namely, ethyl 4-(2-ethoxy-2-oxoethyl)-3-oxo-3,4-dihydroquinoxaline-2-carboxylate (2) and 3-oxo-3,4-dihydroquinoxaline-2-carbohydrazide (3) respectively. Their structures were confirmed by single-crystal X-ray analysis. Hirshfeld surface (HS) analysis is performed to understand the nature and magnitude of intermolecular interactions in the crystal packing. Density functional theory using the wb97xd/def2-TZVP method was chosen to explore their reactivity, electronic stability and optical properties. Charge transfer (CT) and orbital energies were analyzed via natural population analysis (NPA), and frontier molecular orbital (FMO) theory. The calculated excellent static hyperpolarizability (ßo) indicates nonlinear optical (NLO) properties for 2 and 3. Both compounds show potent activity against c-Jun N-terminal kinases 1 (JNK 1) based on structural activity relationship studies, further subjected to molecular docking, molecular dynamics and ADMET analysis to understand their potential as drug candidates.Communicated by Ramaswamy H. Sarma.

6.
J Biomol Struct Dyn ; 42(2): 1015-1030, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37027788

RESUMO

One of the most common viral infections worldwide is the Human Papilloma Virus (HPV) which has been linked to cancer and other diseases in many countries. Monosaccharide esters are significant in the field of carbohydrate chemistry because they are efficient in the synthesis of pharmacologically active compounds. Therefore, the present study aimed to perform thermodynamic, molecular docking and molecular dynamics study of a series of previously designed monosaccharaides, methyl ß-d-galactopyranoside (MGP, 1) esters (2-10) with along with their physicochemical and pharmacokinetic properties. We have optimized the MGP esters employing the DFT study at the B3LYP/6-311 + G (d,p) level of theory. The subsequent analysis also investigated the electronic energies, enthalpies, entropies, polarizability, and natural bond orbital (NBO) of these modified esters. Then, MGP esters were docked into CTX-M-15 extended-spectrum beta-lactamase from Escherichia coli (PDB: 4HBT) and E2 DNA-binding domain from human papillomavirus type 31 (PDB: 1A7G), and the results revealed that most of the esters can efficiently bind to the target. Desmond was used to doing molecular dynamics simulations at 200 ns in addition to molecular docking to look at the binding conformational stability of the protein-ligand complex. Based on RMSD and RMSF, it was determined that the stability of the protein-ligand combination was maintained during the whole 200 ns simulations for all compounds. Finally, a pharmacokinetic study suggests that modified esters of MGP exhibited better pharmacokinetic characteristics and were less hazardous than the parent drug. This work demonstrated that potential MGP esters can efficiently bind to 4HBT and 1A7G proteins and opened avenues for the development of newer antimicrobial agents that can target dangerous pathogens.Communicated by Ramaswamy H. Sarma.


Assuntos
Anti-Infecciosos , Galactose , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligantes , Escherichia coli , Ésteres , Antivirais/farmacologia
7.
Bioengineering (Basel) ; 10(12)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38135952

RESUMO

Despite extensive genetic and biochemical characterization, the molecular genetic basis underlying the biosynthesis of ß-diketones remains largely unexplored. ß-Diketones and their complexes find broad applications as biologically active compounds. In this study, in silico molecular docking results revealed that two ß-diketone derivatives, namely 2-(2-(4-fluorophenyl)hydrazono)-5,5-dimethylcyclohexane-1,3-dione and 5,5-dimethyl-2-(2-(2-(trifluoromethyl)phenyl)hydrazono)cyclohexane-1,3-dione, exhibit anti-COX-2 activities. However, recent docking results indicated that the relative anti-COX-2 activity of these two studied ß-diketones was influenced by the employed docking programs. For improved design of COX-2 inhibitors from ß-diketones, we conducted molecular dynamics simulations, density functional theory (DFT) calculations, Hirshfeld surface analysis, energy framework, and ADMET studies. The goal was to understand the interaction mechanisms and evaluate the inhibitory characteristics. The results indicate that 5,5-dimethyl-2-(2-(2-(trifluoromethyl)phenyl)hydrazono)cyclohexane-1,3-dione shows greater anti-COX-2 activity compared to 2-(2-(4-fluorophenyl)hydrazono)-5,5-dimethylcyclohexane-1,3-dione.

8.
Heliyon ; 9(11): e21040, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37954267

RESUMO

The optical charge-transfer (CT) property and the crystal structure of (Z)-4-(1-cyano-2-(2,4,5-trimethoxyphenyl)vinyl)pyridin-1-ium chloride monohydrate salt (I), which belongs to an acrylonitrile family, was studied. The title salt, I, was characterized using different spectroscopy techniques and a single-crystal X-ray diffraction study combined with quantum chemical computations. The results showed that the color properties of I are determined by the CT, changes in bandgap, optical absorption, and various non-covalent interactions. The HOMO-LUMO energy gaps are 5.41 eV and 5.23 eV for the precursor and salt, respectively. It was demonstrated that π-π stacking interactions lead to the formation of intercalated dimers and donor-acceptor interactions assisted by hydrogen bonds; the dimers and interactions are different between the precursor and the salt. The cation moiety is mainly stabilized by N(1)+-H···Cl, and the anion is predominantly stabilized by strong O(1W)- H⋯ Cl- bonds as well as the hydrogen bonds with the MeO group O(2W)-H⋯O(1) and O(2W)-H⋯O(1W). The charge transfer between cation and anion moieties in the structure is established through NBO analysis.

9.
Bioorg Chem ; 141: 106896, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37806050

RESUMO

The reaction of aromatic ring-substituted isoselenocyanates with 2-thiopheacetic and 4-pyridinecarboxylic acid hydrazides yielded selenosemicarbazides which were further converted into previously unknown 1,2,4-triazole-3-selones and 3,3'-di(4H-1, 2,4-triazolyl)diselenides. The structures of the obtained compounds were studied by NMR spectroscopy, IR spectroscopy, and high-resolution mass spectroscopy (HR-MS). The bactericidal and fungicidal activity of some obtained compounds was evaluated in molecular modeling studies such as docking and simulation studies. The compound 3ba was reported as the most promising compound to show robust binding energy with different antibacterial and antifungal compounds. The compounds were observed in strong hydrophilic and hydrophobic interactions and remained in stable binding conformation with the receptor enzymes. Furthermore, the interatomic interaction energies were dominated by Van der Waals and electrostatic energies indicating the formation of stable complexes.


Assuntos
Antibacterianos , Fungicidas Industriais , Antibacterianos/química , Antifúngicos/química , Espectrometria de Massas , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Triazóis/química , Compostos Organosselênicos/farmacologia
10.
J Biomol Struct Dyn ; : 1-15, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37878040

RESUMO

Tetrahydroisoquinolines (THIQs) are a significant class within the broad range of natural compounds known as isoquinoline alkaloids. Natural and manmade drugs based on THIQ have a variety of biological effects that protect against different infectious pathogens and neurological diseases. In this study, two new THIQ derivatives were synthesized and characterized using by X-ray crystallographic analysis. The performed Hirshfeld analysis shows the intermolecular interactions and reactive sites of compounds. The 2D fingerprints reveal dominants H···C interactions up to 8.8% in 3a while 43% H···H elemental interactions are observed in compound 3b. In studied compound 3a, the repulsion energies (k-rep) dominate the other energies where the highest amount of 63.8 kJ/mol is obtained whereas 3b has a significant contribution from E-dis to the total energy of the molecule from the energy framework study. Moreover, the density functional theory study reveals better thermodynamic and electronic stabilities. These compounds have reduced HOMO-LUMO gaps (EH-L) ranging from 3.66 to 3.60 eV, indicating their remarkable conductive and electronic properties. The significant reduction in EH-L also guarantees our synthesized compounds' soft nature and reactivity. Our studied compound's NBO charges and MEPs analysis show electron-rich sites and donor-acceptor mechanism. Our synthesized compounds have remarkable polarizability (αo) and hyperpolarizability (ßo) values (446.23 - 1312.73 au), which indicates their optical and nonlinear optical properties. The density of states spectra further illustrates their notable structural-electronic properties and reduced band gaps. Based on structural activity relationship studies, we found that these tetrahydro-isoquinolines derivatives are potent against microsomal prostaglandin E synthase 1(MPGES1), the docking analysis shows that studied compounds have a good binding affinity with MPGES1, and further ADME/T analysis was carried out for both compounds. In addtion to this molecular dynamics, studies were performed to understand the binding stability of both compounds in protien complex system during 100 ns simulation.Communicated by Ramaswamy H. Sarma.

11.
J Biomol Struct Dyn ; : 1-19, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37318002

RESUMO

Anti-SARS-CoV-2 drugs are urgently needed to prevent the pandemic and for immunization. Their protease inhibitor treatment for COVID-19 has been used in clinical trials. In Calu-3 and THP1 cells, 3CL SARS-CoV-2 Mpro protease is required for viral expression, replication, and the activation of the cytokines IL-1, IL-6, and TNF-. The Mpro structure was chosen for this investigation because of its activity as a chymotrypsin-like enzyme and the presence of a cysteine-containing catalytic domain. Thienopyridine derivatives increase the release of nitric oxide from coronary endothelial cells, which is an important cell signaling molecule with antibacterial activity against bacteria, protozoa, and some viruses. Using DFT calculations, global descriptors are computed from HOMO-LUMO orbitals; the molecular reactivity sites are analyzed from an electrostatic potential map. NLO properties are calculated, and topological analysis is also part of the QTAIM studies. Both compounds 1 and 2 were designed from the precursor molecule pyrimidine and exhibited binding energies (-14.6708 kcal/mol and -16.4521 kcal/mol). The binding mechanisms of molecule 1 towards SARS-COV-2 3CL Mpro exhibited strong hydrogen bonding as well as Vdw interaction. In contrast, derivative 2 was bound to the active site protein's active studied that several residues and positions, including (His41, Cys44, Asp48, Met49, Pro52, Tyr54, Phe140, Leu141, Ser144, His163, Ser144, Cys145, His164, Met165, Glu166, Leu167, Asp187, Gln189, Thr190, and GLn192) are critical for the maintenance of inhibitors inside the active pocket. Molecular docking and 100 ns MD simulation analysis revealed that Both compounds 1 and 2 with higher binding affinity and stability toward the SARS-COV-2 3CL Mpro protein. Binding free energy calculations and other MD parameters support the finding.Communicated by Ramaswamy H. Sarma.

12.
Medicina (Kaunas) ; 59(6)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37374310

RESUMO

Nucleoside analogs are frequently used in the control of viral infections and neoplastic diseases. However, relatively few studies have shown that nucleoside analogs have antibacterial and antifungal activities. In this study, a fused pyrimidine molecule, uridine, was modified with various aliphatic chains and aromatic groups to produce new derivatives as antimicrobial agents. All newly synthesized uridine derivatives were analyzed by spectral (NMR, FTIR, mass spectrometry), elemental, and physicochemical analyses. Prediction of activity spectra for substances (PASS) and in vitro biological evaluation against bacteria and fungi indicated promising antimicrobial capability of these uridine derivatives. The tested compounds were more effective against fungal phytopathogens than bacterial strains, as determined by their in vitro antimicrobial activity. Cytotoxicity testing indicated that the compounds were less toxic. In addition, antiproliferative activity against Ehrlich ascites carcinoma (EAC) cells was investigated, and compound 6 (2',3'-di-O-cinnamoyl-5'-O-palmitoyluridine) demonstrated promising anticancer activity. Their molecular docking against Escherichia coli (1RXF) and Salmonella typhi (3000) revealed notable binding affinities and nonbonding interactions in support of this finding. Stable conformation and binding patterns/energy were found in a stimulating 400 ns molecular dynamics (MD) simulation. Structure-activity relationship (SAR) investigation indicated that acyl chains, CH3(CH2)10CO-, (C6H5)3C-, and C2H5C6H4CO-, combined with deoxyribose, were most effective against the tested bacterial and fungal pathogens. Pharmacokinetic predictions were examined to determine their ADMET characteristics, and the results in silico were intriguing. Finally, the synthesized uridine derivatives demonstrated increased medicinal activity and high potential for future antimicrobial/anticancer agent(s).


Assuntos
Anti-Infecciosos , Antineoplásicos , Humanos , Estrutura Molecular , Uridina/farmacologia , Uridina/uso terapêutico , Simulação de Acoplamento Molecular , Nucleosídeos/farmacologia , Nucleosídeos/uso terapêutico , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
13.
J King Saud Univ Sci ; 35(4): 102628, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36908997

RESUMO

In the present work, we describe the extraction of a natural product namely 1,4,9,9-tetramethyloctahydro-4,7-(epoxymethano)azulen-5(1H)-one, and its structure was confirmed by single crystal X-ray diffraction analysis. The conformations of the 5-, 6-, and 7-membered rings in the title compound, C15H24O2, have been probed by a Cremer-Pople puckering analysis. C-H···O hydrogen bonds generate chains in the crystal that stretch along the c-axis direction. The Hirshfeld surface analysis method was used to stabilize the crystal packing of the natural compound. Accompanied by experimental studies, quantum chemical calculations were also performed to compare the structural elucidation and the results of these geometrical parameters exhibited excellent agreement. The compound was also docked with several drug targets of the SARS-CoV-2 virus and found to show the best binding with the main protease enzyme, having a binding energy of -12.31 kcal/mol and interacting with His41 and Cys145 residues. The dynamic stability deciphered the complex to be stable with an average RMSD of 3.8 Å. The compound dynamics with the enzyme showed the compound conformation to be highly stable. The intermolecular binding free energy determined the compound-main protease enzyme to show high interaction energy of < 40 kcal/mol. Together, these studies demonstrate the compound to be a lead structure against SARS-CoV-2.

14.
J Biomol Struct Dyn ; 41(23): 14275-14284, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36794735

RESUMO

In recent times, the novel coronavirus disease (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has now become a worldwide pandemic. With over 71 million confirmed cases, even though the effectiveness and side effects of the specific drugs and vaccines approved for this disease are still limited. Scientists and researchers from all across the world are working to find a vaccine and a cure for COVID-19 by using large-scale drug discovery and analysis. Heterocyclic compounds are regarded to be valuable sources for the discovery of new antiviral medications against SARS-CoV-2 because virus occurrences are still on the rise, and infectivity and mortality may also rise shortly. In this regard, we have synthesized a new triazolothiadiazine derivative. The structure was characterized by NMR spectra and confirmed by X-ray diffraction analysis. The structural geometry coordinates of the title compound are well reproduced by DFT calculations. NBO and NPA analyses have been performed to determine the interaction energies between bonding and antibonding orbital, and natural atomic charges of heavy atoms. Molecular docking suggests that the compounds may have good affinity for SAR-CoV-2 main protease, RNA-dependent RNA polymerase and nucleocapsid enzymes, particularly the main protease enzyme (binding energy of -11.9 kcal mol-1). The predicted docked pose of the compound is dynamically stable and reports a major van der Waals contribution (-62.00 kcal mol-1) to overall net energy.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Tiadiazinas , Humanos , SARS-CoV-2 , Tiadiazinas/farmacologia , Simulação de Acoplamento Molecular , Raios X , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Peptídeo Hidrolases , Simulação de Dinâmica Molecular , Antivirais/farmacologia , Antivirais/química
15.
J Biomol Struct Dyn ; 41(11): 5277-5290, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-35665631

RESUMO

Infection by the human immunodeficiency virus still represents a continuous serious concern and a global threat to human health. Due to the appearance of multi-resistant virus strains and the serious adverse side effects of the antiretroviral therapy administered, there is an urgent need for the development of new treatment agents that are more active, less toxic, and with increased tolerability to mutations. Quinoxaline derivatives are a class of heterocyclic compounds with a wide range of organic and remedial applications. In addition, they are known to significantly inhibit HIV reverse transcriptase (RT) and HIV replication in cell cultures. For these reasons, we are investigating the synthesis and computational studies of quinoxaline derivatives with a focus on their effects on the HIV RT enzyme, and we present here the structure of one such molecule, methyl 2-[(2E)-3-oxo-1,2,3,4-tetrahydroquinoalin-2-ylidene] acetate, which was confirmed by X-ray diffraction studies. In the crystal, N-H···O and C-H···O hydrogen bonds form ribbons whose mean planes are inclined to (111) by 25.69(8)°. The ribbons are formed into stacks by C-H···π(ring) interactions and π-stacking interactions between carbonyl groups. The Hirshfeld surface map allows us to understand the nature of interactions in the contribution to crystal packing. A density functional theory (DFT) calculation was performed to optimize the geometrical parameters and then they were compared with the solid-state phase. The molecular electrostatic potential map displays reactive sites on the surface, which are responsible for intermolecular interaction in the chemical species. Computational molecular docking, in addition to molecular dynamics simulations and MMGB/PBSA binding energy techniques, was used to assess the affinity of the molecule for the HIV reverse transcriptase enzyme. The new quinoxaline derivative is more powerful in terms of binding affinity and binding conformation stability with the HIV reverse transcriptase enzyme, which suggests the molecule is a good candidate for further biological optimization.Communicated by Ramaswamy H. Sarma.


Assuntos
Fármacos Anti-HIV , Humanos , Fármacos Anti-HIV/química , Inibidores da Transcriptase Reversa/farmacologia , Transcriptase Reversa do HIV , Simulação de Acoplamento Molecular , Quinoxalinas/química , Quinoxalinas/farmacologia
16.
J Biomol Struct Dyn ; 41(20): 10859-10868, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36533379

RESUMO

In 2022, the ongoing multi-country outbreak of monkeypox virus-now occurring outside Africa, too is a global health concern. Monkeypox is a zoonotic virus, which causes disease mainly in animals, and then it is transferred to humans. Recently, in the monkeypox epidemic, a large number of human cases emerged while the global health community worked to tackle the outbreak and save lives. Herein, a multi-epitope-based vaccine is designed against monkeypox virus using two surface-associated proteins: MPXVgp002 accession number > YP_010377003.1 and MPXVgp008 accession number > YP_010377007.1 proteins. These proteins were utilized for B- and T-cell epitopes prediction. The epitopes were further screened, and the screen filtered KCKDNEYRSR, RSCNTTHNR, and RTRRETGAS with the antigenicity scores of 0.5279, 0.5604, and 0.7628, respectively. Overall, the epitopes can induce immunity in 99.74% population of the world. Further, GPGPG linkers were used for joining the epitopes and EAAAK linker was used for adjuvant attachment. It has a three-dimensional structure modelled for retaining the structural stability. Three pairs of amino acid residues that were able to make disulfide bonds were chosen: Gly1-Ser82, Cys7-Tyr10, and Phe51-Ile55. Molecular docking of vaccine was done with toll-like receptors, viz., 2, 3, 4, and 8 immune cell receptors. The docking results revealed that the vaccine as potential molecule due to its better binding affinity with toll-like receptors 2, 3, 4 and 8. Top complex in docking in with each receptor was selected based on lowest energy scores- -888.7 kcal/mol (TLR-2), -976.3 kcal/mol (TLR-3), -801.9 kcal/mol (TLR-4), and -955.4 kcal/mol (TLR-4)-were subjected to simulation. The docked complexes were evaluated in 500 ns of MD simulation. Throughout the simulation time, no significant deviation occurred. This confirmed that the vaccine as potential vaccine candidate to interact with immune cell receptors. This interaction is important for the immune system activation. In conclusion, the proposed vaccine construct against monkeypox could induce an effective immune response and speed up the vaccine development process. However, the study is completely based on the computational approach, hence, the experimental validation is required.Communicated by Ramaswamy H. Sarma.


Assuntos
Mpox , Vacinas , Animais , Humanos , Monkeypox virus , Proteínas de Membrana , Simulação de Acoplamento Molecular , Receptor 4 Toll-Like , Epitopos de Linfócito T , Epitopos de Linfócito B , Vacinas de Subunidades Antigênicas , Biologia Computacional
17.
PLoS One ; 17(11): e0273256, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36441684

RESUMO

The RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 is one of the optimum targets for antiviral drug design and development. The hydroxyl groups of cytidine structures were modified with different aliphatic and aromatic groups to obtain 5´-O-acyl and 2´,3´-di-O-acyl derivatives, and then, these derivatives were employed in molecular modeling, antiviral prediction, molecular docking, molecular dynamics, pharmacological and POM studies. Density functional theory (DFT) at the B3LYP/6-31G++ level analyzed biochemical behavior and molecular electrostatic potential (MESP) of the modified cytidine derivatives. The antiviral parameters of the mutated derivatives revealed promising drug properties compared with those of standard antiviral drugs. Molecular docking has determined binding affinities and interactions between the cytidine derivatives and SARS-CoV-2 RdRp. The modified derivatives strongly interacted with prime Pro620 and Lys621 residues. The binding conformation and interactions stability were investigated by 200 ns of molecular dynamics simulations and predicted the compounds to firmly dock inside the RdRp binding pocket. Interestingly, the binding residues of the derivatives were revealed in high equilibrium showing an enhanced binding affinity for the molecules. Intermolecular interactions are dominated by both Van der Waals and electrostatic energies. Finally, the pharmacokinetic characterization of the optimized inhibitors confirmed the safety of derivatives due to their improved kinetic properties. The selected cytidine derivatives can be suggested as potential inhibitors against SARS-CoV-2. The POM Theory supports the hypothesis above by confirming the existence of an antiviral (Oδ--O'δ-) pharmacophore site of Hits.


Assuntos
Tratamento Farmacológico da COVID-19 , Simulação de Dinâmica Molecular , Humanos , Simulação de Acoplamento Molecular , SARS-CoV-2 , Citidina/farmacologia , Receptores de Droga , Antivirais/farmacologia , RNA Polimerase Dependente de RNA
18.
Sci Rep ; 12(1): 15828, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36138056

RESUMO

The cobalt (II) complexes have been synthesized from the reaction of the cationic entities (3,4-dimethylaniline (1) and histamine (2)) with metallic salt CoCl2⋅6H2O and thiocyanate ion (SCN-) as a ligand in H2O/ethanolic solution and processing by the evaporation crystal growth method at room temperature to get crystals. The synthesized complex has been fully characterized by single-crystal X-ray diffraction. UV-Visible, FTIR spectroscopy, TGA analysis, and DFT circulations were also performed. The crystal structural analysis reveals that the solid (1) {[Co(SCN)4] (C8H12N)3}·Cl crystallizes in the monoclinic system with the space group P21/n and the solid (2) {[Co(SCN)4](C5H11N3)2}·2Cl crystallizes in the monoclinic space group P21/m. Metal cations are joined into corrugated chains parallel to the b-axis direction in (1) and (2) by four thiocyanate anions. The crystal structures of (1) and (2) were calculated using XRPD data, indicating that they are closely connected to the DRX mono-crystal results. Different interactions pack the system into a ring formed by N-H⋯Cl and N-H⋯S hydrogen bonds. C-H⋯π and the π⋯π stacking of anilinuim ring for (1) and N-H⋯S intermolecular interactions for (1) and (2) increase the crystals' robustness. Hirshfeld surface analysis cum 2D fingerprint plots visualize the main intermolecular interactions with their contributions in the solid-state phase. The molecular geometries of both complexes obtained from the crystal structure were used for quantum chemical calculation. Here, frontier orbital analysis and electrostatic potential illustrate the chemical reactivities of metal-organic complexes. QTAIM and NCI analysis reveal the strength of interactions at the electronic level.


Assuntos
Cobalto , Complexos de Coordenação , Antioxidantes , Cátions , Cobalto/química , Histamina , Ligantes , Modelos Moleculares , Teoria Quântica , Tiocianatos/química
19.
Arab J Chem ; 15(11): 104230, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36124333

RESUMO

Although antimicrobial resistance before the Covid-19 pandemic is a top priority for global public health, research is already ongoing on novel organic compounds with antimicrobial and antiviral properties in changing medical environments in connection with Covid 19. Thanks to the Biginelli reaction, which allows the synthesis of pyrimidine compounds, blockers of calcium channels, antibodies, antiviral, antimicrobial, anti-inflammatory, or antioxidant therapeutic compounds were investigated. In this paper, we aim to present Biginelli's synthesis, its therapeutic properties, and the structural-functional relationship in the test compounds that allows the synthesis of antimicrobial compounds. Both the DFT and TD-DFT computations of spectral data, molecular orbitals (HOMO, LUMO) analysis, and electrostatic potential (MEP) surfaces are carried out as an add-on to synthetic research. Hirshfeld surface analysis was also used to segregate the different intermolecular hydrogen bonds involved in the molecular packing strength. Natural Bond Orbital (NBO) investigation endorses the existence of intermolecular interactions mediated by lone pair, bonding, and anti-bonding orbitals. The dipole moment, linear polarizability, and first hyperpolarizabilities have been explored as molecular parameters. All findings based on DFT exhibit the best consistency with experimental findings, implying that synthesized molecules are highly stable. To better understand the binding mechanism of the SARS-CoV-2 Mpro, we performed molecular docking, molecular dynamics (MD) simulations, and binding free energy calculations.

20.
Appl Biochem Biotechnol ; 194(12): 5781-5807, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35819690

RESUMO

Although nonsteroidal anti-inflammatory drugs (NSAIDs) are medicines that are widely used to relieve pain, reduce inflammation, and bring down high temperature, literature confirmed that they still have harmful side effects. Most of their side effects are in the digestive system due to the carboxylic group. As naproxen is one of the NSAIDs, in this work, we try to mask the carboxylic group in naproxen with a relatively safe functional group. So, herein, we report the synthesis of new naproxen-based hydrazones derivatives, namely, (E)-N'-1-(4-chlorophenyl)ethylidene)-2-(6-methoxynaphthalen-2-yl)propane hydrazide (4a) and (E)-N'-(4-hydroxybenzylidene)-2-(6-methoxynaphthalen-2-yl)propane hydrazide ethanol solvate (4b). The compounds were confirmed by X-ray diffraction studies. Hirshfeld surface analyses and energy frameworks of 4a and 4b have been carried out and blind molecular docking studies of them to the COX-2 enzyme were undertaken to obtain binding affinities for judging whether the compounds could act as anti-inflammatory agents. The compounds interact with the key residues: Arg120, Val349, Leu352, Tyr355, Val523, Ala527, Ser530, and Leu531 of the active enzyme pocket. Molecular dynamics studies predicted that the complexes of 4a and 4b with COX-2 are structurally stable and no major conformational changes were observed. Confirmation of the docking and simulation data was achieved by a binding free energies analysis that indicated the dominance of van der Waals energy. The compounds are drug-like molecules as they obey all prominent drug-like rules and have acceptable pharmacokinetic profiles. To investigate the relationship between their intrinsic electronic properties and their possible similarities to actual drugs, the gas-phase DFT optimizations and NBO analyses were also performed in this study.


Assuntos
Inibidores de Ciclo-Oxigenase 2 , Naproxeno , Naproxeno/química , Naproxeno/farmacologia , Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Simulação de Acoplamento Molecular , Ciclo-Oxigenase 2/metabolismo , Hidrazinas , Propano , Anti-Inflamatórios não Esteroides/farmacologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...