Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 15547, 2024 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969662

RESUMO

Root-knot nematodes (RKNs) are a vital pest that causes significant yield losses and economic damage to potato plants. The use of chemical pesticides to control these nematodes has led to environmental concerns and the development of resistance in the nematode populations. Endophytic fungi offer an eco-friendly alternative to control these pests and produce secondary metabolites that have nematicidal activity against RKNs. The objective of this study is to assess the efficacy of Aspergillus flavus (ON146363), an entophyte fungus isolated from Trigonella foenum-graecum seeds, against Meloidogyne incognita in filtered culture broth using GC-MS analysis. Among them, various nematicidal secondary metabolites were produced: Gadoleic acid, Oleic acid di-ethanolamide, Oleic acid, and Palmitic acid. In addition, biochemical compounds such as Gallic acid, Catechin, Protocatechuic acid, Esculatin, Vanillic acid, Pyrocatechol, Coumarine, Cinnamic acid, 4, 3-indol butyl acetic acid and Naphthyl acetic acid by HPLC. The fungus was identified through morphological and molecular analysis, including ITS 1-4 regions of ribosomal DNA. In vitro experiments showed that culture filtrate of A. flavus had a variable effect on reducing the number of egg hatchings and larval mortality, with higher concentrations showing greater efficacy than Abamectin. The fungus inhibited the development and multiplication of M. incognita in potato plants, reducing the number of galls and eggs by 90% and 89%, respectively. A. flavus increased the activity of defense-related enzymes Chitinas, Catalyse, and Peroxidase after 15, 45, and 60 days. Leaching of the concentrated culture significantly reduced the second juveniles' stage to 97% /250 g soil and decreased the penetration of nematodes into the roots. A. flavus cultural filtrates via soil spraying improved seedling growth and reduced nematode propagation, resulting in systemic resistance to nematode infection. Therefore, A. flavus can be an effective biological control agent for root-knot nematodes in potato plants. This approach provides a sustainable solution for farmers and minimizes the environmental impact.


Assuntos
Aspergillus flavus , Endófitos , Controle Biológico de Vetores , Doenças das Plantas , Solanum tuberosum , Tylenchoidea , Solanum tuberosum/parasitologia , Solanum tuberosum/microbiologia , Animais , Endófitos/fisiologia , Doenças das Plantas/parasitologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Tylenchoidea/efeitos dos fármacos , Tylenchoidea/fisiologia , Controle Biológico de Vetores/métodos , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/metabolismo , Aspergillus flavus/efeitos dos fármacos , Raízes de Plantas/parasitologia , Raízes de Plantas/microbiologia , Antinematódeos/farmacologia , Antinematódeos/metabolismo , Trigonella/microbiologia
2.
Front Plant Sci ; 13: 870518, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720553

RESUMO

Background: Plant-parasitic nematodes are one of the major constraints to soybean production around the world. Plant-parasitic nematodes cause an estimated $78 billion in annual crop losses worldwide, with a 10-15% crop yield loss on average. Consequently, finding and applying sustainable methods to control diseases associated with soybean is currently in serious need. Methods: In this study, we isolated, purified, characterized, and identified a novel cyanobacterial strain Oscillatoria sp. (blue-green alga). Based on its microscopic examination and 16S rRNA gene sequence, the aqueous and methanolic extracts of Oscillatoria were used to test their nematicidal activity against Meloidogyne incognita hatchability of eggs after 72 h of exposure time and juvenile mortality percentage in vitro after 24, 48, and 72 h of exposure time and reduction percentage of galls, eggmass, female number/root, and juveniles/250 soil. Also, the efficacy of the extract on improving the plant growth parameter and chlorophyll content under greenhouse conditions on soybean plant cv. Giza 111 was tested. Finally, the expression of PR-1, PR-2, PR-5, and PR15 (encoding enzymes) genes contributing to plant defense in the case of M. incognita invasion was studied and treated with Oscillatoria extract. Results: The aqueous and methanolic extracts of Oscillatoria sp. had nematicidal activity against M. incognita. The percentage of mortality and egg hatching of M. incognita were significantly increased with the increase of time exposure to Oscillatoria extract 96.7, 97, and 98 larvae mortality % with S concentration after 24, 48, and 72 h of exposure time. The aqueous extract significantly increased the percentage of Root-Knot nematodes (RKN) of egg hatching, compared with Oxamyl and methanol extract at 96.7 and 97% after 72 h and 1 week, respectively. With the same concentration in the laboratory experiment. Furthermore, water extracts significantly reduced the number of galls in soybean root, egg masses, and female/root by 84.1, 87.5, and 92.2%, respectively, as well as the percentage of J2s/250 g soil by 93.7%. Root, shoot lengths, dry weight, number of pods/plant, and chlorophyll content of soybean treated with Oscillatoria water extract were significantly higher than the control increasing by 70.3, 94.1, 95.5, and 2.02%, respectively. The plant defense system's gene expression was tracked using four important pathogenesis-related genes, PR-1, PR-2, PR-5, and PR15, which encode enzymes involved in plant defense. Conclusions: Oscillatoria extract is a potential nematicide against root-knot nematode invasion in soybean.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...