Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
Parasitol Res ; 123(6): 241, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864931

RESUMO

Managing primary amoebic meningoencephalitis, induced by Naegleria fowleri poses a complex medical challenge. There is currently no specific anti-amoebic drug that has proven effectiveness against N. fowleri infection. Ongoing research endeavours are dedicated to uncovering innovative treatment strategies, including the utilization of drugs and immune modulators targeting Naegleria infection. In this study, we explored the potential of imidazo[2,1-b]thiazole and imidazooxazole derivatives that incorporate sulfonate and sulfamate groups as agents with anti-amoebic properties against N. fowleri. We assessed several synthesized compounds (1f, 1m, 1q, 1s, and 1t) for their efficacy in eliminating amoebae, their impact on cytotoxicity, and their influence on the damage caused to human cerebral microvascular endothelial (HBEC-5i) cells when exposed to the N. fowleri (ATCC 30174) strain. The outcomes revealed that, among the five compounds under examination, 1m, 1q, and 1t demonstrated notable anti-parasitic effects against N. fowleri (P ≤ 0.05). Compound 1t exhibited the highest anti-parasitic activity, reducing N. fowleri population by 80%. Additionally, three compounds, 1m, 1q, and 1t, significantly mitigated the damage inflicted on host cells by N. fowleri. However, the results of cytotoxicity analysis indicated that while 1m and 1q had minimal cytotoxic effects on endothelial cells, compound 1t caused moderate cytotoxicity (34%). Consequently, we conclude that imidazo[2,1-b]thiazole and imidazooxazole derivatives containing sulfonate and sulfamate groups exhibit a marked capacity to eliminate amoebae viability while causing limited toxicity to human cells. In aggregate, these findings hold promise that could potentially evolve into novel therapeutic options for treating N. fowleri infection.


Assuntos
Antiprotozoários , Células Endoteliais , Naegleria fowleri , Tiazóis , Humanos , Tiazóis/farmacologia , Tiazóis/química , Naegleria fowleri/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Antiprotozoários/farmacologia , Antiprotozoários/química , Antiprotozoários/síntese química , Linhagem Celular , Imidazóis/farmacologia , Imidazóis/química , Imidazóis/síntese química , Oxazóis/farmacologia , Oxazóis/química , Sobrevivência Celular/efeitos dos fármacos
2.
Eur J Med Chem ; 274: 116557, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38850857

RESUMO

Design and synthesis of novel 4-carboxamidopyrido[3,2-b]pyridine derivatives as novel rigid analogues of sorafenib are reported herein. The target compounds showed potent antiproliferative activities against a panel of NCI-60 cancer cell lines as well as hepatocellular carcinoma cell line. Compounds 8g and 9f were among the most promising derivatives in terms of effectiveness and safety. Therefore, they were further examined to demonstrate their ability to induce apoptosis and alter cell cycle progression in hepatocellular carcinoma cells. The most potent compounds were tested against a panel of kinases that indicated their selectivity against FMS kinase. Compounds 8g and 8h showed the most potent activities against FMS kinase with IC50 values of 21.5 and 73.9 nM, respectively. The two compounds were also tested in NanoBRET assay to investigate their ability to inhibit FMS kinase in cells (IC50 = 563 nM (8g) and 1347 nM (8h) vs. IC50 = 1654 nM for sorafenib). Furthermore, compounds 8g and 8h possess potent inhibitory activities against macrophages when investigated in bone marrow-derived macrophages (BMDM) assay (IC50 = 56 nM and 167 nM, respectively, 164 nM for sorafenib). The safety and selectivity of these compounds were confirmed when tested against normal cell lines. Their safety profile was further confirmed using hERG assay. In silico studies were carried out to investigate their binding modes in the active site of FMS kinase, and to develop a QSAR model for these new motifs.


Assuntos
Antineoplásicos , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Proteínas Quinases , Piridinas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Piridinas/farmacologia , Piridinas/química , Piridinas/síntese química , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Estrutura Molecular , Apoptose/efeitos dos fármacos , Relação Dose-Resposta a Droga , Linhagem Celular Tumoral , Animais , Simulação de Acoplamento Molecular , Camundongos
3.
Int J Biol Macromol ; 271(Pt 1): 132502, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38768915

RESUMO

A series of sulfonate and sulfamate derivatives bearing benzofuran or benzothiophene scaffold exhibited potent inhibitory effect on urease enzyme. Most of the derivatives exhibited significantly higher potency than thiourea, the standard inhibitor. Compound 1s was identified as the most potent urease inhibitor with an IC50 value of 0.42 ± 0.08 µM, which is 53-fold more potent than thiourea, positive control (IC50 = 22.3 ± 0.031 µM). The docking results further revealed the binding interactions towards the urease active site. Phenotypic screening revealed that compounds 1c, 1d, 1e, 1f, 1j, 1n, and 1t exhibit high potency against H. pylori with MIC values ranging from 0.00625 to 0.05 mM and IC50 values ranging from 0.0031 to 0.0095 mM, much more potent than the positive control, acetohydroxamic acid (MIC and IC50 values were 12.5 and 7.38 mM, respectively). Additional studies were performed to investigate the toxicity of these compounds against the gastric epithelial cell line (AGS) and their selectivity profile against E. coli, and five Lactobacillus species representative of the gut microflora. Permeability characteristics of the most promising derivatives were investigated in Caco-2 cell line. The results indicate that the compounds could be targeted in the GIT only without systemic side effects.


Assuntos
Antibacterianos , Benzofuranos , Inibidores Enzimáticos , Helicobacter pylori , Simulação de Acoplamento Molecular , Ácidos Sulfônicos , Tiofenos , Urease , Urease/antagonistas & inibidores , Urease/metabolismo , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/enzimologia , Ácidos Sulfônicos/química , Ácidos Sulfônicos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Benzofuranos/química , Benzofuranos/farmacologia , Humanos , Tiofenos/química , Tiofenos/farmacologia , Desenho de Fármacos , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Descoberta de Drogas
4.
Bioorg Med Chem ; 101: 117645, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401456

RESUMO

All three possible sulfamate derivatives of the selective estrogen receptor modulator Raloxifene (bis-sulfamate 7 and two mono-sulfamates 8-9) were synthesized and evaluated as inhibitors of the clinical drug target steroid sulfatase (STS), both in cell-free and in cell-based assays, and also as estrogen receptor (ER) modulators. Bis-sulfamate 7 was the most potent STS inhibitor with an IC50 of 12.2 nM in a whole JEG3 cell-based assay, with the two mono-sulfamates significantly weaker. The estrogen receptor-modulating activities of 7-9 showed generally lower affinities compared to Raloxifene HCl, diethylstilbestrol and other known ligands, with mono-sulfamate 8 being the best ligand (Ki of 1.5 nM) for ERα binding, although 7 had a Ki of 13 nM and both showed desirable antagonist activity. The antiproliferative activities of the sulfamate derivatives against the T-47D breast cancer cell line showed 7 as most potent (GI50 = 7.12 µM), comparable to that of Raloxifene. Compound 7 also showed good antiproliferative potency in the NCI-60 cell line panel with a GI50 of 1.34 µM against MDA-MB-231 breast cancer cells. Stability testing of 7-9 showed that bis-sulfamate 7 hydrolyzed by desulfamoylation at a surprisingly rapid rate, initially leading selectively to 8 and finally to Raloxifene 3 without formation of 9. The mechanisms of these hydrolysis reactions could be extensively rationalized. Conversion of Raloxifene (3) into its bis-sulfamate (7) thus produced a promising drug lead with nanomolar dual activity as an STS inhibitor and ERα antagonist, as a potential candidate for treatment of estrogen-dependent breast cancer.


Assuntos
Neoplasias da Mama , Cloridrato de Raloxifeno , Ácidos Sulfônicos , Humanos , Feminino , Cloridrato de Raloxifeno/farmacologia , Receptor alfa de Estrogênio , Linhagem Celular Tumoral , Inibidores Enzimáticos/química , Esteril-Sulfatase , Neoplasias da Mama/tratamento farmacológico , Moduladores de Receptor Estrogênico
5.
Parasitol Int ; 98: 102814, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37806551

RESUMO

Acanthamoeba are ubiquitously distributed in the environment and can cause infection of the central nervous system as well a sight-threatening eye infection. Herein, the potential anti-amoebic activity of a series of sulfonate/sulfamate derivatives against pathogenic A. castellanii was evaluated. These compounds were tested using several assays namely amoebicidal, adhesion, excystation, cytotoxic, and cytopathogenicity. Amoebicidal assays revealed that the selected compounds reduced amoebae viability significantly (P < 0.05), and exhibited IC50 values at two-digit micromolar concentrations. Sulfamate derivatives 1j & 1k inhibited 50% of amoebae at 30.65 µM and 27.21 µM, respectively. The tested compounds blocked amoebae binding to host cells as well as inhibited amoebae excystation. Notably, the selected derivatives exhibited minimal human cell cytotoxicity but reduced parasite-mediated host cell damage. Overall, our study showed that sulfamate derivatives 1j & 1k have anti-amoebic potential and offer a promising avenue in the development of potential anti-amoebic drug candidates.


Assuntos
Acanthamoeba castellanii , Amebicidas , Humanos , Acanthamoeba castellanii/genética , Ácidos Sulfônicos/farmacologia , Alcanossulfonatos , Genótipo
6.
BMC Cancer ; 23(1): 1053, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919708

RESUMO

BACKGROUND: Breast cancer is the most common malignancy globally, and is considered a major cause of cancer-related death. Tremendous effort is exerted to identify an optimal anticancer drug with limited side effects. The quinoline derivative RIMHS-Qi-23 had a wide-spectrum antiproliferative activity against various types of cancer cells. METHODS: In the current study, the effect of RIMHS-Qi-23 was tested on MCF-7 breast cancer cell line to evaluate its anticancer efficacy in comparison to the reference compound doxorubicin. RESULTS: Our data suggest an anti-proliferative effect of RIMHS-Qi-23 on the MCF-7 cell line with superior potency and selectivity compared to doxorubicin. Our mechanistic study suggested that the anti-proliferative effect of RIMHS-Qi-23 against MCF-7 cell line is not through targeted kinase inhibition but through other molecular machinery targeting cell proliferation and senescence such as cyclophlin A, p62, and LC3. CONCLUSION: RIMHS-Qi-23 is exerting an anti-proliferative effect that is more potent and selective than doxorubicin.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Células MCF-7 , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Proliferação de Células , Doxorrubicina/farmacologia , Linhagem Celular Tumoral
8.
J Agric Food Chem ; 71(42): 15476-15484, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37818663

RESUMO

The glucosinolate-myrosinase system, exclusively found in the Brassicaceae family, is a main defense strategy against insect resistance. The efficient detoxification activity of glucosinolate sulfatases (GSSs) has successfully supported the feeding of Plutella xylostella on cruciferous plants. With the activity of GSSs hampered in P. xylostella, the toxic isothiocyanates produced from glucosinolates severely impair larval growth and adult reproduction. Therefore, inhibitors of GSSs have been suggested as an alternative approach to controlling P. xylostella. Herein, we synthesized eight adamantyl-possessing sulfamate derivatives as novel inhibitors of GSSs. Adam-20-S exhibited the most potent GSS inhibitory activity, with an IC50 value of 9.04 mg/L. The suppression of GSSs by Adam-20-S impaired glucosinolate metabolism to produce more toxic isothiocyanates in P. xylostella. Consequently, the growth and development of P. xylostella were significantly hindered when feeding on the host plant. Our study may help facilitate the development of a comprehensive pest management strategy that combines insect detoxification enzyme inhibitors with plant chemical defenses.


Assuntos
Adamantano , Glucosinolatos , Animais , Glucosinolatos/farmacologia , Glucosinolatos/metabolismo , Insetos/metabolismo , Plantas/metabolismo , Sulfatases , Isotiocianatos/farmacologia , Isotiocianatos/metabolismo
9.
Eur J Pharmacol ; 960: 176119, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37852569

RESUMO

Polycystic ovary syndrome (PCOS) is a prevalent hormonal disorder that affects women of reproductive age. It is characterized by abnormal production of androgens, typically present in small quantities in females. This study aimed to investigate the therapeutic potential of Irosustat (STX64), STX140, and compound 1G as new drug candidates for the treatment of letrozole-induced PCOS in female Wistar rats. 36 rats were divided into six groups of equal size. PCOS was induced in all groups, except the normal control group, by administering letrozole orally (1 mg/kg/day for 35 days). The onset of abnormal estrous cycle was confirmed by examining daily vaginal smears under a microscope. Subsequently, each rat group was assigned to a different treatment regimen, including one control group, one letrozole group, one metformin group (500 mg/kg/day) as a reference drug, and the other groups received a different drug candidate orally for 30 days. After treatment, blood collection was performed for biochemical measurements and determination of oxidative stress markers. The rats were dissected to separate ovaries and uterus for morphological, histological, and western blotting studies. Treatment with the drug candidates improved the ovaries and uterus weight measurements compared to the untreated PCOS group. The three tested drug candidates demonstrated promising improvements in lipid profile, blood glucose level, testosterone, progesterone, luteinizing hormone (LH), follicle-stimulating hormone (FSH), and estradiol levels. In addition, western blotting confirmed their promising effects on Akt, mTOR, and AMPK-α pathways. This study led to the discovery of three promising drug candidates for the management of PCOS as alternatives to metformin.


Assuntos
Metformina , Síndrome do Ovário Policístico , Humanos , Feminino , Ratos , Animais , Síndrome do Ovário Policístico/induzido quimicamente , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/metabolismo , Metformina/efeitos adversos , Letrozol/efeitos adversos , Ratos Wistar
10.
Future Med Chem ; 15(20): 1885-1901, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37814826

RESUMO

Imidazo[2,1-b]oxazole and 2,3-dihydroimidazo[2,1-b]oxazole ring systems are commonly employed in therapeutically active molecules. In this article, the authors review the utilization of these core scaffolds as chemotherapeutic agents from 2018 to 2022. These scaffolds possess many important biological activities including antimicrobial and anticancer, among others. This review covers their biological activities and structure-activity relationships. One of the most important drugs in this class of compounds is the antitubercular agent delamanid. In this paper, the compounds structure-activity relationship and preclinical and clinical trial data are thoroughly presented.


Assuntos
Antituberculosos , Oxazóis , Oxazóis/farmacologia , Antituberculosos/farmacologia , Relação Estrutura-Atividade
11.
Eur J Med Chem ; 261: 115796, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37708796

RESUMO

FMS kinase is a type III tyrosine kinase receptor that plays a central role in the pathophysiology and management of several diseases, including a range of cancer types, inflammatory disorders, neurodegenerative disorders, and bone disorders among others. In this review, the pathophysiological pathways of FMS kinase in different diseases and the recent developments of its monoclonal antibodies and inhibitors during the last five years are discussed. The biological and biochemical features of these inhibitors, including binding interactions, structure-activity relationships (SAR), selectivity, and potencies are discussed. The focus of this article is on the compounds that are promising leads and undergoing advanced clinical investigations, as well as on those that received FDA approval. In this article, we attempt to classify the reviewed FMS inhibitors according to their core chemical structure including pyridine, pyrrolopyridine, pyrazolopyridine, quinoline, and pyrimidine derivatives.


Assuntos
Neoplasias , Humanos , Relação Estrutura-Atividade , Receptores Proteína Tirosina Quinases/química , Receptores Proteína Tirosina Quinases/metabolismo
12.
Eur J Med Chem ; 261: 115779, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37776574

RESUMO

A series of 36 pyrazol-4-yl pyridine derivatives (8a-i, 9a-i, 10a-i, and 11a-i) was designed, synthesized, and evaluated for its antiproliferative activity over NCI-60 cancer cell line panel and inhibitory effect against JNK isoforms (JNK1, JNK2, and JNK3). All the synthesized compounds were tested against the NCI-60 cancer cell line panel. Compounds 11b, 11c, 11g, and 11i were selected to determine their GI50s and exerted a superior potency over the reference standard SP600125 against the tested cell lines. 11c showed a GI50 of 1.28 µM against K562 leukemic cells. Vero cells were used to assess 11c cytotoxicity compared to the tested cancer cells. The target compounds were tested against hJNK isoforms in which compound 11e exhibited the highest potency against JNK isoforms with IC50 values of 1.81, 12.7, and 10.5 nM against JNK1, JNK2, and JNK3, respectively. Kinase profiling of 11e showed higher JNK selectivity in 50 kinase panels. Compounds 11c and 11e showed cell population arrest at the G2/M phase, induced early apoptosis, and slightly inhibited beclin-1 production at higher concentrations in K562 leukemia cells relative to SP600125. NanoBRET assay of 11e showed intracellular JNK1 inhibition with an IC50 of 2.81 µM. Also, it inhibited CYP2D6 and 3A4 with different extent and its hERG activity showed little cardiac toxicity with an IC50 of 4.82 µM. hJNK3 was used as a template to generate the hJNK1 crystal structure to explore the binding mode of 11e (PDB ID: 8ENJ) with a resolution of 2.8 °A and showed a typical type I kinase inhibition against hJNK1. Binding energy scores showed that selectivity of 11e towards JNK1 could be attributed to additional hydrophobic interactions relative to JNK3.


Assuntos
Azóis , Proteínas Quinases JNK Ativadas por Mitógeno , Animais , Chlorocebus aethiops , Células Vero , Azóis/farmacologia , Isoformas de Proteínas , Piridinas/farmacologia , Proliferação de Células
13.
Parasitol Res ; 122(11): 2539-2548, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37665414

RESUMO

Naegleria fowleri is a free-living thermophilic flagellate amoeba that causes a rare but life-threatening infection called primary amoebic meningoencephalitis (PAM), with a very high fatality rate. Herein, the anti-amoebic potential of carboxamide derivatives possessing sulfonyl or sulfamoyl moiety was assessed against pathogenic N. fowleri using amoebicidal, cytotoxicity and cytopathogenicity assays. The results from amoebicidal experiments showed that derivatives dramatically reduced N. fowleri viability. Selected derivatives demonstrated IC50 values at lower concentrations; 1j showed IC50 at 24.65 µM, while 1k inhibited 50% amoebae growth at 23.31 µM. Compounds with significant amoebicidal effects demonstrated limited cytotoxicity against human cerebral microvascular endothelial cells. Finally, some derivatives mitigated N. fowleri-instigated host cell death. Ultimately, this study demonstrated that 1j and 1k exhibited potent anti-amoebic activity and ought to be looked at in future studies for the development of therapeutic anti-amoebic pharmaceuticals. Further investigation is required to determine the clinical relevance of our findings.


Assuntos
Amebicidas , Amoeba , Infecções Protozoárias do Sistema Nervoso Central , Naegleria fowleri , Humanos , Células Endoteliais , Amebicidas/farmacologia , Encéfalo/patologia , Infecções Protozoárias do Sistema Nervoso Central/tratamento farmacológico
14.
Mol Biochem Parasitol ; 256: 111582, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37562558

RESUMO

Acanthamoeba are known to cause a vision threatening eye infection typically due to contact lens wear, and an infection of the central nervous system. The ability of these amoebae to switch phenotypes, from an active trophozoite to a resistant cyst form is not well understood; the cyst stage is often resistant to chemotherapy, which is of concern given the rise of contact lens use and the ineffective disinfectants available, versus the cyst stage. Herein, for the first time, a range of raloxifene sulfonate/sulfamate derivatives which target nucleotide pyrophosphatase/phosphodiesterase enzymes, were assessed using amoebicidal and excystation tests versus the trophozoite and cyst stage of Acanthamoeba. Moreover, the potential for cytopathogenicity inhibition in amoebae was assessed. Each of the derivatives showed considerable anti-amoebic activity as well as the ability to suppress phenotypic switching (except for compound 1a). Selected raloxifene derivatives reduced Acanthamoeba-mediated host cell damage using lactate dehydrogenase assay. These findings suggest that pyrophosphatase/phosphodiesterase enzymes may be valuable targets against Acanthamoeba infections.


Assuntos
Acanthamoeba castellanii , Animais , Cloridrato de Raloxifeno/farmacologia , Ácidos Sulfônicos/farmacologia , Trofozoítos , Alcanossulfonatos/farmacologia , Diester Fosfórico Hidrolases/farmacologia
15.
PLoS One ; 18(6): e0286684, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37267378

RESUMO

Urease enzyme is a known therapeutic drug target for treatment of Helicobacter pylori infection due to its role in settlement and growth in gastric mucosa. In this study, we designed a new series of sulfonates and sulfamates bearing imidazo[2,1-b]thiazole scaffold that exhibit a potent inhibitory activity of urease enzyme. The most potent compound 2c inhibited urease with an IC50 value of 2.94 ± 0.05 µM, which is 8-fold more potent than the thiourea positive control (IC50 = 22.3 ± 0.031 µM). Enzyme kinetics study showed that compound 2c is a competitive inhibitor of urease. Molecular modeling studies of the most potent inhibitors in the urease active site suggested multiple binding interactions with different amino acid residues. Phenotypic screening of the developed compounds against H. pylori delivered molecules of that possess high potency (1a, 1d, 1h, 2d, and 2f) in comparison to the positive control, acetohydroxamic acid. Additional studies to investigate the selectivity of these compounds against AGS gastric cell line and E. coli were performed. Permeability of the most promising derivatives (1a, 1d, 1h, 2d, and 2f) in Caco-2 cell line, was investigated. As a result, compound 1d presented itself as a lead drug candidate since it exhibited a promising inhibition against urease with an IC50 of 3.09 ± 0.07 µM, MIC value against H. pylori of 0.031 ± 0.011 mM, and SI against AGS of 6.05. Interestingly, compound 1d did not show activity against urease-negative E. coli and exhibited a low permeability in Caco-2 cells which supports the potential use of this compound for GIT infection without systemic effect.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Urease/metabolismo , Infecções por Helicobacter/tratamento farmacológico , Escherichia coli/metabolismo , Células CACO-2 , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Inibidores Enzimáticos/química , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
16.
ChemMedChem ; 18(14): e202300117, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37132161

RESUMO

Stereochemical and skeletal complexity are particularly important vis-à-vis the cross-talks between a small molecule and a complementary active site of a biological target. This intricate harmony is known to increase selectivity, reduce toxicity, and increase the success rate in clinical trials. Therefore, the development of novel strategies for establishing underrepresented chemical space that is rich in stereochemical and skeletal diversity is an important milestone in a drug discovery campaign. In this review, we discuss the evolution of interdisciplinary synthetic methodologies utilized in chemical biology and drug discovery that has revolutionized the discovery of first-in-class molecules over the last decade with an emphasis on complexity-to-diversity and pseudo-natural product strategies as a remarkable toolbox for deciphering next-generation therapeutics. We also report how these approaches dramatically revolutionized the discovery of novel chemical probes that target underrepresented biological space. We also highlight selected applications and discuss key opportunities offered by these tools and important synthetic strategies used for the construction of chemical spaces that are rich in skeletal and stereochemical diversity. We also provide insight on how the integration of these protocols has the promise of changing the drug discovery landscape.


Assuntos
Produtos Biológicos , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Descoberta de Drogas
17.
Antibiotics (Basel) ; 12(3)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36978428

RESUMO

Pathogenic Acanthamoeba produce keratitis and fatal granulomatous amoebic encephalitis. Treatment remains problematic and often ineffective, suggesting the need for the discovery of novel compounds. For the first time, here we evaluated the effects of the anticancer drugs Irosustat and STX140 alone, as well as their nanoformulations, against A. castellanii via amoebicidal, excystment, cytopathogenicity, and cytotoxicity assays. Nanoformulations of the compounds were successfully synthesized with high encapsulation efficiency of 94% and 82% for Irosustat and STX140, respectively. Nanoparticles formed were spherical in shape and had a unimodal narrow particle size distribution, mean of 145 and 244 nm with a polydispersity index of 0.3, and surface charge of -14 and -15 mV, respectively. Irosustat and STX140 exhibited a biphasic release profile with almost 100% drug released after 48 h. Notably, Irosustat significantly inhibited A. castellanii viability and amoebae-mediated cytopathogenicity and inhibited the phenotypic transformation of amoebae cysts into the trophozoite form, however their nanoformulations depicted limited effects against amoebae but exhibited minimal cytotoxicity when tested against human cells using lactate dehydrogenase release assays. Accordingly, both compounds have potential for further studies, with the hope of discovering novel anti-Acanthamoeba compounds, and potentially developing targeted therapy against infections of the central nervous system.

18.
J Org Chem ; 88(7): 4244-4253, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-36926917

RESUMO

The development of robust and step-economic strategies to access structurally diverse drug-like compound collections remains a challenge. A distinct structural option that constitutes the core scaffold of many biologically significant molecules is the quinazolinone ring system. Several members of this family of privileged substructures have gained attention due to their diverse biological activities. In this context, the development of an efficient strategy for their access is needed. Herein, we report a divergent metal-free operation to access a diverse collection of C6-substituted pyrrolo[4',3',2':4,5]isoquinolino[1,2-b]quinazolin-8(6H)-one and pyrrolo[4',3',2':4,5]isoquinolino[2,1-a]quinazolin-12(6H)-one architectures. The described cascade unites Friedel-Crafts and aza-Michael addition reactions. This operationally simple protocol enables a rapid access to these scaffolds and is compatible with a wide scope of starting materials. In addition, the cascade features a promising approach for the design of unique compound libraries for drug design and discovery programs.

19.
J Org Chem ; 88(3): 1600-1612, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36637399

RESUMO

The de novo assembly of stereochemically and skeletally diverse scaffolds is a powerful tool for the discovery of novel chemotypes. Hence, the development of modular, step- and atom-economic synthetic methods to access stereochemically and skeletally diverse compound collection is particularly important. Herein, we show a metal-free, stereodivergent build/couple/pair strategy that allows access to a unique collection of benzo[5,6][1,4]oxazino[4,3-a]quinazoline, quinolino[1,2-a]quinazoline and benzo[b]benzo [4,5]imidazo[1,2-d][1,4]oxazine scaffolds with complete diastereocontrol and wide distribution of molecular architectures. This metal-free process proceeds via desymmetrization of phenol derivatives. The cascade unites Mannich with aza-Michael addition reactions, providing expeditious entries to diverse classes of molecular shapes in a single operation.

20.
J Appl Microbiol ; 134(1)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36626774

RESUMO

AIMS: To determine the anti-amoebic activity of benzofuran/benzothiophene-possessing compounds against Acanthamoeba castellanii of the T4 genotype. METHOD AND RESULTS: A series of benzofuran/benzothiophene-possessing compounds were tested for their anti-amoebic activities, in particular, to block encystation and excystation processes in amoebae. Cytotoxicity of the compounds were evaluated using lactate dehydrogenase (LDH) assays. The amoebicidal assay results revealed significant anti-amoebic effects against A. castellanii. Compounds 1p and 1e showed the highest amoebicidal activity, eliminating 68% and 64% of the amoebae, respectively. These compounds remarkably repressed both the encystation and excystation processes in A. castellanii. Furthermore, the selected compounds presented minimal cytotoxic properties against human cells, as well as considerably abridged amoeba-mediated cytopathogenicity when compared to the amoebae alone. CONCLUSIONS: Our findings show that benzofuran/benzothiophene derivatives depict potent anti-amoebic activities; thus these compounds should be used as promising and novel agents in the rationale development of therapeutic strategies against Acanthamoeba infections.


Assuntos
Acanthamoeba castellanii , Amebicidas , Amoeba , Benzofuranos , Humanos , Acanthamoeba castellanii/genética , Genótipo , Benzofuranos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA