Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 12(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35454205

RESUMO

Curcumin's antioxidant properties reduce free radicals and may improve broiler growth. Therefore, the influence of stocking density (SD) and administration of curcumin in the diet on broiler performance was explored to clarify the impact of HSD and curcumin on the performance of growth, behavioural patterns, haematological, oxidant/antioxidant parameters, immunity markers, and the growth-related genes expression in broiler chickens. A total of 200 broiler chickens (Cobb 500, 2-weeks old) were allotted into 4 groups; SD (moderate and high) and curcumin (100 and 200 mg/kg diet)-supplemented HSD, respectively. Behavioural observations were performed. After a 28-day experimental period, tissue and blood samples were collected for analysis. Expressions of mRNA for insulin-like growth factor-1 (IGF-1), growth hormone receptor (GHR), myostatin (MSTN), and leptin in liver tissues were examined. HSD birds exhibited lower growth performance measurements, haematological parameters, circulating 3,5,3-triiodothyronine and thyroxine levels, antioxidant activities (GSH-Px, catalase, superoxide dismutase), immunoglobulins (A, G, M), and hepatic GHR and IGF-1 expression values. However, HSD birds even had an increment of serum corticosterone, malondialdehyde, pro-inflammatory cytokine (TNF-a, IL-2, IL-6) levels, hepatic leptin and MSTN expression. Moreover, HSD decreased drinking, feeding, crouching, body care, and increased standing and walking behaviour. The addition of curcumin, particularly at a 200 mg/kg diet, alleviated the effect of HSD through amending growth-related gene expression in the chickens. In conclusion, curcumin can enhance birds' growth performance, behavioural patterns, and immunity by reducing oxidative stress and up-regulating the growth-related gene expressions of broilers under stressful conditions due to a high stocking density.

2.
Environ Sci Pollut Res Int ; 29(25): 38198-38211, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35067888

RESUMO

Silver nanoparticles (AgNPs) are commonly utilized in medicine. However, they have negative effects on the majority of organs, including the reproductive system. AgNPs were reported to be able to reach the testicular tissues due to their nano size, which allows them to pass through blood-testicular barriers. The goal of this study was to see if alpha-lipoic acid (LA) or Ginkgo biloba (GB) might protect adult rat testes after intraperitoneal injection of AgNPs. Forty male healthy adult Wister albino rats were randomly assigned to four groups: control, AgNPs-intoxicated group intraperitoneally injected AgNPs 50 mg/kg b.w, 3 times a week; LA + AgNPs group intoxicated with AgNPs and orally gavaged with 100 mg LA/kg b.w; and GB + AgNPs group injected with AgNPs and orally given GB extract 120 mg/kg b.w for 30 consecutive days. Biochemical changes (testosterone, ACP, and prostatic acid phosphatase), oxidative indices, mRNA expression of proapoptotic (BAX) and anti-apoptotic (BCL-2) biomarkers, histological, and immunohistochemical changes in testicular tissues were investigated. Significant decrease in serum testosterone level and elevation in ACP and PACP enzyme activity in AgNPs-treated rats. As well, there were lowering in tGSH, GSH GR, GPx, and elevation in MDA and GSSG values. AgNPs-exposed rats expressed downregulation of testicular thirodexin-1 (Txn-1), transforming growth factor-1ß (TGF-1ß), anti-apoptotic (BCL-2), and upregulaion of proapoptotic biomarkers (BAX) mRNA expressions. Strong positive action to BAX and lowering the action of Ki-67 antibody were observed. Because of their antioxidant, anti-inflammatory, and anti-apoptotic properties, cotreatment with LA or GB could be beneficial in reducing the harmful effects of AgNPs on the testicles.


Assuntos
Nanopartículas Metálicas , Doenças Testiculares , Ácido Tióctico , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Biomarcadores/metabolismo , Ginkgo biloba , Humanos , Masculino , Nanopartículas Metálicas/toxicidade , Estresse Oxidativo , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Prata/química , Testosterona , Ácido Tióctico/metabolismo , Ácido Tióctico/farmacologia , Proteína X Associada a bcl-2/metabolismo
3.
Environ Sci Pollut Res Int ; 29(15): 21998-22011, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34775563

RESUMO

Lead has long been known as neurotoxic and immunotoxic heavy metal in human and animals including fish, whereas, 2, 3-dimethylsuccinic acid (DMSA) and fulvic acid (FA) are well-known biological chelators. The present investigation was carried out to assess the potential chelating and antioxidant effects of dietary supplementation with DMSA and FA against lead acetate (Pb)-induced oxidative stress in Nile tilapia, O. niloticus. One-hundred and eighty apparently healthy O. niloticus fish (30 ± 2.5 g) were allocated into six equal groups. The first group was fed on basal diet and served as control, while the second group was fed on DMSA-supplemented basal diets at levels of 30 mg/kg diet; the third group was fed on FA-supplemented basal diet at level of 0.3 mg/kg diet; the forth, fifths, and sixth groups were exposed to 14.4 mg Pb /L water (1/10 LC50) and feed on basal diet only, basal diet supplemented with DMSA (0.3 mg/kg diet), or basal diet supplemented with FA (0.3 mg/kg diet), respectively. Antioxidant and lipid peroxidative status, activity of glucose 6-phosphate dehydrogenase (G6PD), and lactate dehydrogenase (LDH) as well as the histopathologic findings were evaluated in brain tissues, while the Pb residues were evaluated in liver, muscles, and brain tissues. The results of the present study showed that DMSA and FA decreased malondialdehyde (MDA) and Pb residue in tissues of Pb-exposed fish and improved the histologic picture and brain contents of glutathione (GSH), glutathione-s-transferase (GST), glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT), G6PD, LDH, and total antioxidant capacity (TAC). It could be concluded that DMSA and FA supplementation exhibited potential neuroprotective effect against Pb-induced oxidative brain damages in O. niloticus through improvement of antioxidant status of the brain tissue.


Assuntos
Ciclídeos , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Benzopiranos , Encéfalo/metabolismo , Ciclídeos/metabolismo , Dieta , Suplementos Nutricionais , Chumbo/metabolismo , Fígado , Estresse Oxidativo
4.
Front Neurosci ; 15: 651471, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054412

RESUMO

Fipronil (FIP) is an N-phenylpyrazole insecticide that is used extensively in public health and agriculture against a wide range of pests. Exposure to FIP is linked to negative health outcomes in humans and animals including promoting neuronal cell injury, which results in apoptosis through the production of reactive oxygen species (ROS). Therefore, the purpose of the current study was to investigate the neuroprotective effects of cerium oxide nanoparticles (CeNPs) on neuronal dysfunction induced by FIP in albino rats. Male rats were randomly classified into four groups: control, FIP (5 mg/kg bwt), CeNPs (35 mg/kg bwt), and FIP + CeNPs (5 (FIP) + 35 (CeNPs) mg/kg bwt), which were treated orally once daily for 28 consecutive days. Brain antioxidant parameters, histopathology, and mRNA expression of genes related to brain function were evaluated. The results revealed oxidative damage to brain tissues in FIP-treated rats indicated by the elevated levels of malondialdehyde (MDA) and nitric oxide (NO) levels and reduced activities of antioxidant enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GPx). On the other hand, the FIP's group that was treated with CeNPs showed decrease in MDA and NO levels and increase in SOD and GPx enzymes activity. Besides, FIP-treated rats showed decreased butyrylcholinesterase (BuChE) activity in comparison to the FIP + CeNPs group. Moreover, FIP caused up-regulation of the expression of neuron-specific enolase (NSE), caspase-3, and glial fibrillary acidic protein (GFAP) but down-regulation of B-cell lymphoma-2 (BCL-2) expression. But the FIP + CeNPs group significantly down-regulated the GFAP, NSE, and caspase-3 and up-regulated the gene expression of BCL-2. Additionally, the FIP-treated group of rats had clear degenerative lesions in brain tissue that was reversed to nearly normal cerebral architecture by the FIP + CeNPs treatment. Immunohistochemical examination of brain tissues of rats-treated with FIP showed abundant ionized calcium-binding adaptor molecule 1 (Iba-1) microglia and caspase-3 and apoptotic cells with nearly negative calbindin and synaptophysin reaction, which were countered by FIP + CeNPs treatment that revealed a critical decrease in caspase-3, Iba-1 reaction with a strong calbindin positive reaction in most of the Purkinje cells and strong synaptophysin reaction in the cerebrum and cerebellum tissues. Based on reported results herein, CeNPs treatment might counteract the neurotoxic effect of FIP pesticide via an antioxidant-mediated mechanism.

5.
Animals (Basel) ; 11(3)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804672

RESUMO

Doxorubicin (DOX) has a potent antineoplastic efficacy and is considered a cornerstone of chemotherapy. However, it causes several dose-dependent cardiotoxic results, which has substantially restricted its clinical application. This study was intended to explore the potential ameliorative effect of date palm pollen ethanolic extract (DPPE) against DOX-induced cardiotoxicity and the mechanisms underlying it. Forty male Wistar albino rats were equally allocated into Control (CTR), DPPE (500 mg/kg bw for 4 weeks), DOX (2.5 mg/kg bw, intraperitoneally six times over 2 weeks), and DPPE + DOX-treated groups. Pre-coadministration of DPPE with DOX partially ameliorated DOX-induced cardiotoxicity as DPPE improved DOX-induced body and heart weight changes and mitigated the elevated cardiac injury markers activities of serum aminotransferases, lactate dehydrogenase, creatine kinase, and creatine kinase-cardiac type isoenzyme. Additionally, the concentration of serum cardiac troponin I (cTnI), troponin T (cTnT), N-terminal pro-brain natriuretic peptide (NT-pro BNP), and cytosolic calcium (Ca+2) were amplified. DPPE also alleviated nitrosative status (nitric oxide) in DOX-treated animals, lipid peroxidation and antioxidant molecules as glutathione content, and glutathione peroxidase, catalase, and superoxide dismutase activities and inflammatory markers levels; NF-κB p65, TNF-α, IL-1ß, and IL-6. As well, it ameliorated the severity of histopathological lesions, histomorphometric alteration and improved the immune-staining of the pro-fibrotic (TGF-ß1), pro-apoptotic (caspase-3 and Bax), and anti-apoptotic (Bcl-2) proteins in cardiac tissues. Collectively, pre-coadministration of DPPE partially mitigated DOX-induced cardiac injuries via its antioxidant, anti-inflammatory, anti-fibrotic, and anti-apoptotic potential.

6.
Int J Mol Sci ; 22(8)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33917107

RESUMO

Iron oxide nanoparticle (IONP) therapy has diverse health benefits but high doses or prolonged therapy might induce oxidative cellular injuries especially in the brain. Therefore, we conducted the current study to investigate the protective role of quercetin supplementation against the oxidative alterations induced in the brains of rats due to IONPs. Forty adult male albino rats were allocated into equal five groups; the control received a normal basal diet, the IONP group was intraperitoneally injected with IONPs of 50 mg/kg body weight (B.W.) and quercetin-treated groups had IONPs + Q25, IONPs + Q50 and IONPs + Q100 that were orally supplanted with quercetin by doses of 25, 50 and 100 mg quercetin/kg B.W. daily, respectively, administrated with the same dose of IONPs for 30 days. IONPs induced significant increases in malondialdehyde (MDA) and significantly decreased reduced glutathione (GSH) and oxidized glutathione (GSSG). Consequently, IONPs significantly induced severe brain tissue injuries due to the iron deposition leading to oxidative alterations with significant increases in brain creatine phosphokinase (CPK) and acetylcholinesterase (AChE). Furthermore, IONPs induced significant reductions in brain epinephrine, serotonin and melatonin with the downregulation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and mitochondrial transcription factor A (mtTFA) mRNA expressions. IONPs induced apoptosis in the brain monitored by increases in caspase 3 and decreases in B-cell lymphoma 2 (Bcl2) expression levels. Quercetin supplementation notably defeated brain oxidative damages and in a dose-dependent manner. Therefore, quercetin supplementation during IONPs is highly recommended to gain the benefits of IONPs with fewer health hazards.


Assuntos
Antioxidantes/administração & dosagem , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Nanopartículas Magnéticas de Óxido de Ferro , Estresse Oxidativo/efeitos dos fármacos , Quercetina/administração & dosagem , Animais , Biomarcadores , Epinefrina/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Imuno-Histoquímica , Nanopartículas Magnéticas de Óxido de Ferro/química , Nanopartículas Magnéticas de Óxido de Ferro/ultraestrutura , Melatonina/metabolismo , Oxirredução/efeitos dos fármacos , Tamanho da Partícula , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ratos , Serotonina/metabolismo
7.
Sci Rep ; 11(1): 1310, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446707

RESUMO

Fipronil (FIP) is a phenylpyrazole insecticide that is commonly used in agricultural and veterinary fields for controlling a wide range of insects, but it is a strong environmentally toxic substance. Exposure to FIP has been reported to increase the hepatic fat accumulation through altered lipid metabolism, which ultimately can contribute to nonalcoholic fatty liver disease (NAFLD) development. The present study aimed to examine the function of cerium oxide nanoparticles (CeNPs) in protecting against hepatotoxicity and lipogenesis induced by FIP. Twenty-eight male albino rats were classified into four groups: FIP (5 mg/kg/day per os), CTR, CeNPs (35 mg/kg/day p.o.), and FIP + CeNPs (5 (FIP) + 35 (CeNPs) mg/kg/day p.o.) for 28 consecutive days. Serum lipid profiles, hepatic antioxidant parameters and pathology, and mRNA expression of adipocytokines were assessed. The results revealed that FIP increased cholesterol, height-density lipoprotein, triacylglyceride, low-density lipoprotein (LDL-c), and very-low-density lipoprotein (VLDL-c) concentrations. It also increased nitric oxide (NO) and malondialdehyde (MDA) hepatic levels and reduced glutathione peroxidase (GPx) and superoxide dismutase (SOD) enzyme activities. Additionally, FIP up-regulated the fatty acid-binding protein (FABP), acetyl Co-A carboxylase (ACC1), and peroxisome proliferator-activated receptor-alpha (PPAR-α). Immunohistochemically, a strong proliferation of cell nuclear antigen (PCNA), ionized calcium-binding adapter molecule 1 (Iba-1), cyclooxygenase-2 (COX-2) reactions in the endothelial cells of the hepatic sinusoids, and increased expression of caspase3 were observed following FIP intoxication. FIP also caused histological changes in hepatic tissue. The CeNPs counteracted the hepatotoxic effect of FIP exposure. So, this study recorded an ameliorative effect of CeNPs against FIP-induced hepatotoxicity.


Assuntos
Cério/farmacologia , Lipogênese/efeitos dos fármacos , Nanopartículas/uso terapêutico , Hepatopatia Gordurosa não Alcoólica , Pirazóis , Animais , Masculino , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Pirazóis/efeitos adversos , Pirazóis/farmacologia , Ratos
8.
Front Toxicol ; 3: 700392, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35295157

RESUMO

Introduction: Particulate air pollution, containing nanoparticles, enhances the risk of pediatric allergic diseases that is potentially associated with disruption of neonatal immune system. Previous studies have revealed that maternal exposure to carbon black nanoparticles (CB-NP) disturbs the development of the lymphoid tissues in newborns. Interestingly, the CB-NP-induced immune profiles were observed to be different depending on the gestational period of exposure. It is important to identify the critical exposure period to prevent toxic effects of nanoparticles on the development of the immune system. Therefore, the present study was aimed to investigate the effect of CB-NP on the development of neonatal lymphoid tissues in mice, depending on the gestational period of exposure. Methods: Pregnant ICR mice were treated with a suspension of CB-NP (95 µg/kg body weight) by intranasal instillation; the suspension was administered twice during each gestational period as follows: the pre-implantation period (gestational days 4 and 5), organogenesis period (gestational days 8 and 9), and fetal developmental period (gestational days 15 and 16). The spleen and thymus were collected from offspring mice at 1, 3, and 5-days post-partum. Splenocyte and thymocyte phenotypes were examined by flow cytometry. Gene expression in the spleen was examined by quantitative reverse transcription-polymerase chain reaction. Results: The numbers of total splenocytes and splenic CD3-B220- phenotype (non-T/non-B lymphocytes) in offspring on postnatal day 5 were significantly increased after exposure to CB-NP during the organogenesis period compared with other gestational periods of exposure and control (no exposure). In contrast, expression levels of mRNA associated with chemotaxis and differentiation of immune cells in the spleen were not affected by CB-NP exposure during any gestational period. Conclusion: The organogenesis period was the most susceptible period to CB-NP exposure with respect to lymphoid tissue development. Moreover, the findings of the present and previous studies suggested that long-term exposure to CB-NP across multiple gestational periods including the organogenesis period, rather than acute exposure only organogenesis period, may more severely affect the development of the immune system.

9.
Environ Sci Pollut Res Int ; 27(34): 43322-43339, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32737781

RESUMO

The current work studied the mechanism(s) and ability by which date palm (Phoenix dactylifera L.) fruit extract (DPE) inspired a glucose-lowering impact in rats suffering from diabetes. Forty-eight albino rats were divided into six various experimental treatments after induction of diabetes by intraperitoneal infusion of streptozotocin (45 mg/kg bwt) as follows: normal control, DPE, diabetic control, diabetic glibenclamide (GLI), diabetic DPE, and diabetic GLI plus DPE-treated groups. In animals euthanized after 8 weeks, blood and pancreatic tissue samples were assembled to assess different biochemical and histopathological changes. The expressions of insulin, B cell lymphoma-2 (Bcl-2), and cysteine aspartate-specific protease-3 (caspase-3) in islet ß cells were also evaluated using immunohistochemical assessment. Diabetic rats exhibited hyperglycemia; increment of pancreatic malondialdehyde (lipid peroxidation biomarker), tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß); and decrement of plasma insulin and pancreatic antioxidants: glutathione, superoxide dismutase, and catalase values. Also, the pancreatic islets exhibited histopathological and morphometric alternations associated with weak positive insulin and Bcl-2 immunoreactivity and strong positive caspase-3 immunoreactivity. DPE and/or GLI, an anti-diabetic drug, improved the pancreatic histoarchitecture and improved ß cell function and structure, which increased insulin levels and improved the insulin, Bcl-2, and caspase-3 immunoreactivity in diabetic rats. Nevertheless, the combined DPE and GLI therapy revealed a significant recovery and restoration of ß cells' structure and function. The date palm fruit has anti-apoptotic, anti-inflammatory, and antioxidant activities and hypoglycemic effects, which in turn play a pivotal role in avoiding the progression of diabetes mellitus. Moreover, it could potentiate the glucose-lowering activity of anti-diabetic drugs.


Assuntos
Diabetes Mellitus Experimental , Phoeniceae , Animais , Antioxidantes , Apoptose , Glicemia , Citocinas , Diabetes Mellitus Experimental/tratamento farmacológico , Estresse Oxidativo , Extratos Vegetais , Ratos , Estreptozocina
10.
Molecules ; 25(15)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32751827

RESUMO

Fipronil (FIP) is an insecticide commonly used in many fields, such as agriculture, veterinary medicine, and public health, and recently it has been proposed as a potential endocrine disrupter. The purpose of this study was to inspect the reproductive impacts of FIP and the possible protective effects of cerium nanoparticles (CeNPs) on male albino rats. Rats received FIP (5 mg/kg bwt; 1/20 LD50), CeNPs (35 mg/kg bwt) and FIP+CeNPs per os daily for 28 days. Serum testosterone levels, testicular oxidative damage, histopathological and immunohistochemical changes were evaluated. FIP provoked testicular oxidative damage as indicated by decreased serum testosterone (≈60%) and superoxide dismutase (≈50%), glutathione peroxidase activity (≈46.67%) and increased malondialdehyde (≈116.67%) and nitric oxide (≈87.5%) levels in testicular tissues. Furthermore, FIP induced edematous changes and degeneration within the seminiferous tubules, hyperplasia, vacuolations, and apoptosis in the epididymides. In addition, FIP exposure upregulated interleukin-1ß (IL-1ß), nitric oxide synthase 2 (NOS), caspase-3 (Casp3) and downregulated the Burkitt-cell lymphomas (BCL-2), inhibin B proteins (IBP), and androgen receptor (Ar) mRNA expressions Casp3, nitric oxide synthase (iNOS), ionized calcium-binding adapter molecule 1(IBA1), and IL-1ß immunoreactions were increased. Also, reduction of proliferating cell nuclear antigen (PCNA), mouse vasa homologue (MVH), and SOX9 protein reactions were reported. Interestingly, CeNPs diminished the harmful impacts of FIP on testicular tissue by decreasing lipid peroxidation, apoptosis and inflammation and increasing the antioxidant activities. The findings reported herein showed that the CeNPs might serve as a supposedly new and efficient protective agent toward reproductive toxicity caused by the FIP insecticide in white male rats.


Assuntos
Antioxidantes/administração & dosagem , Apoptose/efeitos dos fármacos , Cério/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Infertilidade Masculina/induzido quimicamente , Infertilidade Masculina/tratamento farmacológico , Inseticidas/efeitos adversos , Nanopartículas Metálicas/química , Estresse Oxidativo/efeitos dos fármacos , Pirazóis/efeitos adversos , Animais , Expressão Gênica/efeitos dos fármacos , Imuno-Histoquímica , Infertilidade Masculina/sangue , Infertilidade Masculina/patologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Ratos , Testículo/metabolismo , Testículo/patologia , Testosterona/sangue
11.
Environ Sci Pollut Res Int ; 27(32): 40757-40768, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32671702

RESUMO

Platelet-rich plasma (PRP) composites of various cytokines and growth factors which have the potential to activate and speed the process of wound repair. Sildenafil also is a potent stimulator of angiogenesis which favors its potential effects on wound healing in several models. Existing work planned to examine the effectiveness of topical application of PRP and/or sildenafil citrate hydrogel (SCH) in a non-splinted excision skin wound model. Adult male rats were allocated into control, PRP, SCH, and PRP/SCH groups. On the 7th and 14th days, blood and tissue samples were collected for hematobiochemical, histopathological, and immunohistochemistry analyses. PRP and/or SCH topical treatments caused an enhancement of wound healing parameters, including a rapid switch from inflammatory phase to connective tissue stage evident by less systemic hematological changes and decreased values of proinflammatory cytokines (IL-6, TNF-α, and IL-1ß) and C-reactive protein (CRP) on the 7th or 14th days post-wounding. Also, tissue hydroxyproline, collagen, nitrite, and total protein contents were higher in therapeutically handled wounded rats. Histologically, PRP- and/or SCH-treated wounded rats exhibited less necrosis, inflammation, and fibrin with a higher level of granulation tissue formation on the 7th day post-wounding and abundant collagen remodeling, epithelization, and vascularization on the 14th day relative to control. Interestingly, combined PRP and SCH treatment was more efficient in wound healing scoring with less inflammation, more collagen remodeling, and more epithelization. Our findings confirm the effectiveness of PRP and/or SCH as a topical wound healing treatment, with better skin wound healing with their combination.


Assuntos
Plasma Rico em Plaquetas , Fator de Crescimento Transformador beta1 , Animais , Colágeno , Citocinas , Masculino , Ratos , Citrato de Sildenafila , Pele , Cicatrização
12.
Environ Sci Pollut Res Int ; 27(18): 23108-23128, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32333347

RESUMO

Thiamethoxam (TMX) is a widely used neonicotinoid insecticide for its effective potential for controlling insects from the agricultural field, which might induce toxicity to the aquatic biota. In this study, the role of the probiotic Bacillus subtilis (BS) and a phytogenic oil extract of Thymus vulgaris essential oil (TVEO) in the modulation of thiamethoxam (TMX)-induced hepatorenal damage, oxidative stress, and immunotoxicity in African catfish (Clarias garipenus) has been evaluated. Fish were subjected to TMX (5 mg L-1) and fed with a diet either supplemented with BS (1000 ppm) or TVEO (500 ppm). The experiment lasted for 1 month. By the end of the experiment, blood was sampled for biochemical analysis and fish organs and tissues were collected for histopathological and immunohistochemical examinations. Results showed a substantial increase of serum markers of hepatorenal damage such as the activities of aspartate transaminase (AST), alanine transaminase (ALT), and alkaline phosphatase (ALP) and levels of blood urea nitrogen (BUN) and creatinine with an obvious decrease of serum protein levels in the TMX-intoxicated group. Also, there was a considerable increase in malondialdehyde (MDA) levels and glutathione-S-transferase (GST) activity. TMX remarkably suppressed serum lysozyme activity, respiratory burst activity, and phagocytosis with a conspicuous elevation of the levels of interleukins (interleukin-1 beta (IL-1ß) and interleukin-6 IL-6). The histopathological findings showed that TMX induced degenerative changes and necrosis in the gills, liver, head kidneys, and spleen of the intoxicated fish. Significant alterations of frequency, size, and area percentage of melanomacrophage centers (MMCs), decreased splenocyte proliferation, and increased number of caspase-3 immunopositive cells were also observed. Contrariwise, the concurrent supplementation of either BS or TVEO in the diets of catfish partially mitigated both the histopathological and histomorphometric lesions of the examined tissues. Correspondingly, they improved the counts of proliferating cell nuclear antigen (PCNA) and caspase-3 immunopositive splenocytes. In conclusion, the co-administration of either BS or TVEO in catfish diets partially diminished the toxic impacts of TMX. Nonetheless, the inclusion of TVEO in the diets of catfish elicited better protection than BS against TMX-induced toxicity in response to its potential anti-inflammatory, antioxidant, anti-apoptotic, and immune-stimulant effects.


Assuntos
Peixes-Gato , Óleos Voláteis , Thymus (Planta) , Animais , Antioxidantes , Bacillus subtilis , Dieta , Fígado , Estresse Oxidativo , Tiametoxam
13.
J Anim Physiol Anim Nutr (Berl) ; 104(2): 549-557, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32017274

RESUMO

We evaluated the effect of prebiotic or probiotic as feed additives on florfenicol kinetic in broilers feed. Unsexed two hundred, thirty-five-day-old broiler chickens, were put in four equal groups (n = 50). The first group was administrated florfenicol intravenous at 30 mg/kg body weight (BW) only once dosage without pre- or probiotic administration to determine the bioavailability. While, the second group was administrated florfenicol (intracrop routes; a dosage of 30 mg/kg BW for five progressive days) without pre- or probiotic co-administration. The third and the fourth groups were administrated the same dose of florfenicol (intracrop route) for five successive days, followed by 10 days of prebiotic or probiotic treatment respectively. The plasma florfenicol % was identified by high-pressure liquid chromatography (HPLC) after the first florfenicol administration (intravenous or intracrop routes) in all groups. Then, the residual levels of florfenicol were determined in liver, kidney and muscle tissues from the second, third and fourth groups which were exposed to florfenicol orally. Our results demonstrated that broilers pre-treated with prebiotic or probiotic significantly increased Cmax , AUC0- t , AUC0-inf as well as AUMC values, while significant drop was recorded in V/F and CL/F. Prebiotic or probiotic influenced the cumulative effect of florfenicol in liver and kidney tissues of treated birds.


Assuntos
Antibacterianos/farmacocinética , Galinhas , Prebióticos , Probióticos , Tianfenicol/análogos & derivados , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Antibacterianos/administração & dosagem , Dieta/veterinária , Interações Medicamentosas , Tianfenicol/administração & dosagem , Tianfenicol/farmacocinética
14.
Environ Sci Pollut Res Int ; 27(16): 19058-19072, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30499089

RESUMO

Nanoparticles (NPs) are very small particles present in a wide range of materials. There is a dearth of knowledge regarding their potential secondary effects on the health of living organisms and the environment. Increasing research attention, however, has been directed toward determining the effects on humans exposed to NPs in the environment. Although the majority of studies focus on adult animals or populations, embryos of various species are considered more susceptible to environmental effects and pollutants. Hence, research studies dealing mainly with the impacts of NPs on embryogenesis have emerged recently, as this has become a major concern. Chicken embryos occupy a special place among animal models used in toxicity and developmental investigations and have also contributed significantly to the fields of genetics, virology, immunology, cell biology, and cancer. Their rapid development and easy accessibility for experimental observance and manipulation are just a few of the advantages that have made them the vertebrate model of choice for more than two millennia. The early stages of chicken embryogenesis, which are characterized by rapid embryonic growth, provide a sensitive model for studying the possible toxic effects on organ development, body weight, and oxidative stress. The objective of this review was to evaluate the toxicity of various types of carbon black nanomaterials administered at the beginning of embryogenesis in a chicken embryo model. In addition, the effects of diamond and graphene NPs and carbon nanotubes are reviewed.


Assuntos
Nanopartículas , Nanotubos de Carbono , Animais , Embrião de Galinha , Galinhas , Diamante , Desenvolvimento Embrionário , Humanos
15.
Neurotoxicology ; 76: 44-57, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31647937

RESUMO

This study was aimed to investigate the potential ameliorative effects of omega-3 (ω3) fatty acids against acrylamide (ACR)-induced neurotoxicity. Thirty-two adult male Sprague Dawley rats were randomly assigned into four groups (n = 8) as follows: control, ω3 fatty acids (1000 mg/kg bwt/day orally), ACR-treated (50 mg/kg bwt/day IP) and ACR plus ω3 fatty acids group. Treatments were performed every other day for 21 consecutive days. ACR induced abnormal gait and elevated serum levels of proinflammatory cytokines (IL-6 and TNF-α), brain and spinal cord MDA levels and decreased brain and spinal cord GSH levels. Moreover, it reduced neurotransmitters (acetylcholine, GABA, serotonin and noradrenaline levels) and increased AChE activity in brain tissues. Histopathologically, ACR caused various degenerative changes, necrosis and glial cell activation in the cerebrum, cerebellum, hippocampus, spinal cord and sciatic nerve. Likewise, the histomorphometric analysis was constant with ACR-induced neurotoxicity. The ACR induced axonal atrophy and myelin disruption and decreased g-ratio of the sciatic nerve. Immunohistochemically, strong positive expressions of apoptotic marker caspase-3 and astroglial GFAP in the examined tissues were detected. Contrariwise, concurrent administration of ω3 fatty acids partially attenuated ACR impacts, as it improved the gait performance, reduced oxidative stress and pro-inflammatory cytokines, and modulate the levels of the neurotransmitters. It also ameliorated the intensity of ACR-induced histopathological and histomorphometric alterations within the examined nervous tissues. It could be concluded that ω3 fatty acids have antioxidant, anti-inflammatory and anti-apoptotic potentials against ACR neurotoxicity via suppression of oxidative stress, lipid peroxidation and pro-inflammatory cytokines, and inhibition of AChE activity and downregulation of caspase-3 and GFAP expressions in the nervous tissues.


Assuntos
Acrilamida/toxicidade , Apoptose/efeitos dos fármacos , Ácidos Graxos Ômega-3/administração & dosagem , Gliose/induzido quimicamente , Inflamação/sangue , Fármacos Neuroprotetores/administração & dosagem , Neurotransmissores/análise , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Citocinas/sangue , Poluentes Ambientais/toxicidade , Peroxidação de Lipídeos , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Ratos Sprague-Dawley , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/patologia
16.
Biol Trace Elem Res ; 193(2): 456-465, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31111309

RESUMO

Healing of injuries caused by exposure to heat has been discussed in many studies, although a few drugs have been shown to produce satisfactory results. In this study, 100 healthy mice randomly allocated into four categories (each = 25 mice) were analyzed. A deep second-degree burn on the back of each mouse was created. The burns were dressed daily with either AgNPs or silver sulfadiazine over 28 days of treatment. Safety evaluation of the AgNP treatment was performed by measuring the deposition rate of silver in the liver, brain, and kidney of treated mice. In the murine burn model, the speed of wound healing and the antibacterial effect of AgNPs were better than those in the silver sulfadiazine group. Burn wounds treated with SSD appeared to display a greater degree of inflammation as notable by the three clinical signs of the inflammatory process such as redness and swelling which appeared to be less after wounds treated with AgNPs. Also, AgNP treatment modified leukocytic infiltration and reduced collagen degeneration in treated mice and enhanced healing processes that were confirmed by morphological and histological investigations. Beside the potential significant effects of AgNPs on reduction of some microorganism counts that routinely isolated from burn wounds included aerobic organisms as Staphylococcus aureus and Escherichia coli when compared to both SSD and control groups. The deposition kinetics of AgNPs revealed lower distribution in the liver, brain, and kidney than that in silver sulfadiazine-treated mice with respect to both SSD and control groups.


Assuntos
Queimaduras/tratamento farmacológico , Nanopartículas Metálicas/uso terapêutico , Prata/farmacologia , Pele/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Animais , Encéfalo/metabolismo , Queimaduras/microbiologia , Modelos Animais de Doenças , Escherichia coli/efeitos dos fármacos , Rim/metabolismo , Fígado/metabolismo , Nanopartículas Metálicas/química , Camundongos , Prata/química , Prata/farmacocinética , Sulfadiazina de Prata/farmacocinética , Sulfadiazina de Prata/farmacologia , Pele/metabolismo , Pele/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Distribuição Tecidual
17.
Vet World ; 12(8): 1319-1326, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31641314

RESUMO

BACKGROUND AND AIM: Ivermectin (IVM) has been used in veterinary practice to control different parasitic infestations over the past two decades. This study aimed to re-assess the acaricidal effects of IVM, as well as to evaluate its efficacy against Rhipicephalus (Boophilus) annulatus by determining the mortality rate, γ-aminobutyric acid (GABA) level, and oxidative/antioxidative homeostasis (malondialdehyde [MDA] levels and glutathione S-transferase [GST] activities). MATERIALS AND METHODS: Adult female Rhipicephalus (Boophilus) annulatus were picked from cattle farms in El-Beheira Governorate, Egypt. Ticks were equally allocated to seven experimental groups to assess the acaricidal potential of IVM chemotherapeutics in controlling R. (B.) annulatus. IVM was prepared at three concentrations (11.43, 17.14, and 34.28 µM of IVM). RESULTS: Mortality rate was calculated among the treated ticks. In addition, GABA, GST, and MDA biomarker levels were monitored. The data revealed a noticeable change in GST activity, a detoxification enzyme found in R. (B.) annulatus, through a critical elevation in mortality percentage. CONCLUSION: IVM-induced potent acaricidal effects against R. (B.) annulatus by repressing GST activity for the initial 24 h after treatment. Collectively, this paper reports the efficacy of IVM in a field population of R. (B.) annulatus in Egypt.

18.
Environ Sci Pollut Res Int ; 26(21): 21524-21534, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31127524

RESUMO

Hydroxyurea (HDU), a class of antineoplastic drugs, has a powerful efficacy in the treatment of several types of malignancies. However, it has multiple adverse effects including reduced fertility, especially in males. Thus, 60 male albino rats were used to investigate the chemoprotective potentials of royal jelly on HDU-induced testicular damage. Animals were gastro-gavaged with HDU (225 or 450 mg kg-1 bw day-1) before royal jelly (100 mg kg-1 bw day-1) for 60 days. Blood samples and testicles were collected, and spermatozoon was obtained. In a dose-dependent manner, the sperm count, motility and liveability, and testosterone, GSH, and catalase concentrations were decreased in HDU groups, whereas MDA, FSH, LH, IL-6, and IFN-γ expression levels were increased. Germinal epithelium degeneration, germ cell sloughing, reduction in the number of luminal spermatozoa, interstitial congestion, and severe leukocyte infiltration besides no glandular secretion in most of the acini were identified. However, royal jelly intake in HDU-treated rats successfully improved sperm quality, hormonal and antioxidant status, and reproductive organ histoarchitecture. Thus, it could be concluded that royal jelly is endowed with antioxidative and anti-inflammatory activities and could be, therefore, used as an adjuvant remedy to improve HDU-induced male subfertility.


Assuntos
Citocinas/metabolismo , Ácidos Graxos/metabolismo , Hidroxiureia/toxicidade , Infertilidade Masculina/metabolismo , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Infertilidade Masculina/induzido quimicamente , Masculino , Oxirredução , Ratos , Espermatozoides/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testosterona/sangue
19.
Environ Sci Pollut Res Int ; 26(9): 9333-9342, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30721437

RESUMO

The potential ameliorative effects of L-α-phosphatidylcholine (PC) against mercuric chloride (HgCl2)-induced hematological and hepato-renal damage were investigated. Rats were randomly allocated into four groups (n = 12): control, PC (100 mg/kg bwt, intragastrically every other day for 30 consecutive days), HgCl2 (5 mg/kg bwt, intragastrically daily), and PC plus HgCl2. Hematological and hepato-renal dysfunctions were evaluated biochemically and histopathologically. Hepatic and renal oxidative/antioxidative indices were evaluated. The expression of proinflammatory cytokines (tumor necrosis factor-α and interleukin-6) was also detected by ELISA. HgCl2 significantly increased serum aminotransferases (ALT, AST), urea, and creatinine levels that are indicative of hepato-renal damage. HgCl2 also induced a significant accumulation of malondialdehyde (+ 195%) with depletion of glutathione (- 43%) levels in the liver and renal tissues. The apparent hepato-renal oxidative damage was associated with obvious organ dysfunction that was confirmed by impairments in the liver and kidney histoarchitecture. Furthermore, HgCl2 significantly attenuated the expression of proinflammatory cytokines named tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Conversely, PC treatment attenuated these effects, which improved the hematological and serum biochemical alternations, reduced the oxidative stress and proinflammatory cytokine levels, and ameliorated the intensity of the histopathological alterations in livers and kidneys of HgCl2-treated rats. It could be concluded that PC displayed potential anti-inflammatory and antioxidant activities against HgCl2-induced hepato-renal damage via suppression of proinflammatory cytokines and declining oxidative stress.


Assuntos
Substâncias Perigosas/toxicidade , Inflamação/metabolismo , Mercúrio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilcolinas/metabolismo , Animais , Antioxidantes/metabolismo , Citocinas/metabolismo , Glutationa/metabolismo , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Cloreto de Mercúrio/metabolismo , Mercúrio/metabolismo , Oxirredução , Estresse Oxidativo/fisiologia , Ratos , Ratos Wistar
20.
Fish Physiol Biochem ; 45(1): 71-82, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29982916

RESUMO

To assess the ameliorative effects of Moringa oleifera (MO) leaf extract on haematological and biochemical changes, liver DNA damage and oxidative stress biomarkers in Nile tilapia (Oreochromis niloticus) exposed to a sublethal concentration (0.52 mg/l) of pendimethalin (PM). Tilapia fish were allocated into four equal groups in tri-replicates as follows: first group was the control group, second group was treated with MO (20 ml/30 l water), third group was exposed to 0.52 mg PM/l and fourth group was exposed to 0.52 mg PM/l and treated with MO leaf extract (20 ml/30 l water) for 28 days. At the end of this period, blood and liver tissue samples were collected and haematological and biochemical changes, hepatic DNA fragmentation and oxidative stress biomarkers were analysed. Pendimethalin caused significant reduction in haematological profile [White blood cells (WBCs) and red blood cells (RBCs) counts, haemoglobin (Hb) concentration and haematocrit (Ht) level]; meanwhile, serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), creatinine, uric acid, glucose, cortisol, cholesterol and lactate dehydrogenase (LDH) were significantly increased. On the other hand, serum total protein, albumin, globulin and acetylcholinesterase (AChE) were decreased. Significant reduction in hepatic superoxide dismutase (SOD), catalase (CAT), total antioxidant capacity (TAC) and glutathione peroxidase (GSH-Px) levels and marked increments of hepatic malondialdehyde (MDA) and DNA fragmentation were observed in PM-exposed fish compared to the control group. The addition of Moringa oleifera leaf extract into the water could overcome the negative impacts of pendimethalin and normalise the examined parameters nearly to the control values. Moringa oleifera was used for the first time to protect tilapia fish against PM-induced toxicity. The present study revealed that Moringa oleifera has potent antioxidant and antigenotoxic actions against pendimethalin toxicity.


Assuntos
Compostos de Anilina/toxicidade , Ciclídeos/metabolismo , Herbicidas/toxicidade , Moringa oleifera/química , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Ciclídeos/sangue , Ciclídeos/genética , Dano ao DNA/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Testes de Mutagenicidade/veterinária , Extratos Vegetais/química , Folhas de Planta/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...