Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(24): 10270-10284, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38829264

RESUMO

The synthesis of eight Ru(II) and Os(II) photosensitizers bearing a common 9,10-disubstituted-1,4,5,8-tetraazaphenanthrene backbone is reported. With Os(II) photosensitizers, the 9,10-diNH2-1,4,5,8-tetraazaphenanthrene could be directly chelated onto the metal center via the heteroaromatic moiety, whereas similar conditions using Ru(II) resulted in the formation of an o-quinonediimine derivative. Hence, an alternative route, proceeding via the chelation of 9-NH2-10-NO2-1,4,5,8-tetraazaphenanthrene and subsequent ligand reduction of the corresponding photosensitizers was developed. Photosensitizers chelated via the polypyridyl-type moiety exhibited classical photophysical properties whereas the o-quinonediimine chelated Ru(II) analogues exhibited red-shifted absorption (520 nm) and no photoluminescence at room temperature in acetonitrile. The most promising photosensitizers were investigated for excited-state quenching with guanosine-5'-monophosphate in aqueous buffered conditions where reductive excited-state electron transfer was observed by nanosecond transient absorption spectroscopy.

2.
J Am Chem Soc ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621164

RESUMO

A novel iridium(III) photosensitizer containing pyridinium-decorated terpyridines has been used for the photo-oxidation of chloride in water. Despite its abundance, the very positive one-electron reduction potential (E° Cl•/- = 2.1-2.4 V vs NHE) restricted its use in energy conversion schemes and artificial photosynthesis. The kinetics of the photoinduced electron transfer process were investigated through Stern-Volmer quenching experiments and nanosecond transient absorption spectroscopy, which provided unambiguous evidence that photoinduced chloride oxidation occurred with a quenching rate constant kq = 5.0 × 1010 M-1 s-1. Complementary spectroelectrochemistry and photolysis experiments confirmed the formation of the reduced photosensitizer and showcased the redox and photostability of the Ir(III) photosensitizer that holds great promise for the HX splitting approach.

3.
J Am Chem Soc ; 146(15): 10286-10292, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38569088

RESUMO

Excited-state quenching and reduction of [Fe(phtmeimb)2]+, where phtmeimb is phenyl[tris(3-methyl-imidazolin-2-ylidene)]borate, with iodide, bromide, and chloride were studied in dichloromethane, acetonitrile, and acetonitrile/water 1:1 mixture by means of steady-state and time-resolved spectroscopic techniques. Quenching rate constants were almost diffusion-limited in dichloromethane and acetonitrile and followed the expected periodic trend, i.e., I- > Br- > Cl-. Confirmation of excited-state reductive electron transfer was only unambiguously obtained when iodide was used as a quencher. The cage escape yields, i.e., the separation of the geminate radical pair formed upon bimolecular excited-state electron transfer, were determined. These yields were larger in dichloromethane (0.079) than in acetonitrile (0.017), and no photoproduct could be observed in acetonitrile/water 1:1. This study further emphasizes that solvents with low dielectric constant are more suited for productive excited-state electron transfer using Fe(III) photosensitizers with 2LMCT excited state.

4.
J Med Chem ; 67(4): 2549-2558, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38345026

RESUMO

Ruthenium(II) polypyridyl complexes exhibit a lack of selectivity toward cancer tissues despite extensive studies as photosensitizers for photodynamic therapy (PDT). Here, we report pH-activatable RuII photosensitizers for molecularly targeted PDT by exploiting the higher acidity of tumoral tissue. The fluorescein moiety, well known for its high pH sensitivity, was connected to a RuII center to yield novel photosensitizers for pH-sensitive 1O2 photogeneration. Their ability to photosensitize molecular dioxygen was studied at various pHs and revealed a drastic enhancement from 0.07 to 0.66 of the 1O2 quantum yield under acidic conditions (pH 7.5 to pH 5.5). Their photocytotoxicity against U2OS osteosarcoma cells was also investigated at pH 5.5 and 7.5 through IC50 determination. A strong enhancement of the photocytotoxicity reaching 930 nM was observed at pH 5.5, which showed the potential of such photosensitizers for pH-activatable PDT.


Assuntos
Complexos de Coordenação , Fenilenodiaminas , Fotoquimioterapia , Rutênio , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Rutênio/farmacologia , Rutênio/química , Fluoresceína , Medicina de Precisão , Bases de Schiff , Complexos de Coordenação/química
5.
Inorg Chem ; 62(39): 16196-16202, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37734153

RESUMO

Two iridium(III) binuclear photosensitizers, [Ir(dFCF3ppy)2(N-N)Ir(dFCF3ppy)2]2+, where N-N is tetrapyrido[3,2-a:2',3'-c:3″,2″-h:2‴,3‴-j]phenazine (Ir-TPPHZ) and 1,4,5,8-tetraazaphenanthrene[9,10-b]-1,4,5,8,9,12-hexaazatriphenylene (Ir-TAPHAT) are reported for iodide, bromide, and chloride photooxidation in acetonitrile and acetonitrile/water mixtures using blue-light irradiation. Excited-state reduction potentials Ered* of +2.02 and +2.09 V vs NHE were determined for Ir-TPPHZ and Ir-TAPHAT, respectively. Both photosensitizers' excited states were efficiently quenched by iodide, bromide, and chloride with quenching rate constants in the (3.5-9.2) × 1010 and (0.0036-2.9) × 1010 M-1 s-1 ranges in neat acetonitrile and acetonitrile/water mixtures, respectively. Nanosecond transient absorption spectroscopy provided unambiguous evidence of reductive excited-state electron transfer, with all halides in the solvent mixtures containing up to 50% water. Cage-escape yields were large (55-96%) in acetonitrile and dropped below 32% in 50:50 acetonitrile/water mixtures.

6.
STAR Protoc ; 4(2): 102312, 2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37182202

RESUMO

Here, we present a protocol for the determination of cage-escape yields following excited-state electron transfer between a photosensitizer and a quencher. We describe steps for determining changes in molar absorption coefficient of the different oxidation states via photolysis experiments and the percentage of reacted species via steady-state or time-resolved spectroscopy. We then detail measurement of the amount of formed product via nanosecond transient absorption spectroscopy. For complete details on the use and execution of this protocol, please refer to Ripak et al. (2023).1.

7.
Chem Catal ; 3(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36936750

RESUMO

Aryl diazonium salts are ubiquitous building blocks in chemistry, as they are useful radical precursors in organic synthesis as well as for the functionalization of solid materials. They can be reduced electrochemically or through a photo-induced electron transfer reaction. Here we provide a detailed picture of the ground and excited-state reactivity of a series of 9 rare and earth abundant photosensitizers with 13 aryl diazonium salts, which also included 3 macrocyclic calix[4]arene tetradiazonium salts. Nanosecond transient absorption spectroscopy confirmed the occurrence of excited-state electron transfer and was used to quantify cage-escape yields, i.e. the efficiency with which the formed radicals separate and escape the solvent cage. Cage-escape yields were large; increased when the driving force for photo-induced electron transfer increased and also tracked with the C-N2 + bond cleavage propensity, amongst others. A photo-induced borylation reaction was then investigated with all the photosensitizers and proceeded with yields between 9 and 74%.

8.
J Am Chem Soc ; 145(9): 5163-5173, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36790737

RESUMO

In natural and artificial photosynthesis, light absorption and catalysis are separate processes linked together by exergonic electron transfer. This leads to free energy losses between the initial excited state, formed after light absorption, and the active catalyst formed after the electron transfer cascade. Additional deleterious processes, such as internal conversion (IC) and vibrational relaxation (VR), also dissipate as much as 20-30% of the absorbed photon energy. Minimization of these energy losses, a holy grail in solar energy conversion and solar fuel production, is a challenging task because excited states are usually strongly coupled which results in negligible kinetic barriers and very fast dissipation. Here, we show that topological control of oligomeric {Ru(bpy)3} chromophores resulted in small excited-state electronic couplings, leading to activation barriers for IC by means of inter-ligand electron transfer of around 2000 cm-1 and effectively slowing down dissipation. Two types of excited states are populated upon visible light excitation, that is, a bridging-ligand centered metal-to-ligand charge transfer [MLCT(Lm)], and a 2,2'-bipyridine-centered MLCT [MLCT(bpy)], which lies 800-1400 cm-1 higher in energy. As a proof-of-concept, bimolecular electron transfer with tri-tolylamine (TTA) as electron donor was performed, which mimics catalyst activation by sacrificial electron donors in typical photocatalytic schemes. Both excited states were efficiently quenched by TTA. Hence, this novel strategy allows to trap higher energy excited states before IC and VR set in, saving between 100 and 170 meV. Furthermore, transient absorption spectroscopy suggests that electron transfer reactions with TTA produced the corresponding Lm•--centered and bpy•--centered reduced photosensitizers, which involve different reducing abilities, that is, -0.79 and -0.93 V versus NHE for Lm•- and bpy•-, respectively. Thus, this approach probably leads in fine to a 140 meV more potent reductant for energy conversion schemes and solar fuel production. These results lay the first stone for anti-dissipative energy conversion schemes which, in bimolecular electron transfer reactions, harness the excess energy saved by controlling dissipative conversion pathways.

9.
Bioconjug Chem ; 34(2): 414-421, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36689988

RESUMO

Detecting cancer at the early stage of the disease is crucial to keep the best chance for successful treatment. The recent development of genomic screening, a methodology that is addressed to asymptomatic patients presumably at risk of carcinogenesis, has stimulated the quest for new tools able to signal the level of risk. Carcinogenesis has been associated to chronic oxidative stress exceeding the antioxidant defenses and leading to critical genome alteration levels. The telomeric regions are presumably the most exposed to oxidative stress due to their high concentration of guanine (i.e., the easiest oxidizable nucleic base). Accumulation of 8-oxoguanine in telomeres, thus oxidative lesions, was reportedly associated with telomeric crisis and carcinogenesis. In this study, we report on the capacity of Ru(II) polyazaaromatic complexes to photoprobe 8-oxoguanine into the human telomeric sequence with the view of developing new tools for cancer risk screening.


Assuntos
Rutênio , Humanos , Telômero , Estresse Oxidativo , Guanina
10.
RSC Chem Biol ; 3(12): 1375-1379, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36544575

RESUMO

Herein we report on the study of novel dinuclear ruthenium(ii) complexes designed to target and to photo-react with G-quadruplex telomeric DNA. Upon irradiation, complexes efficiently generate guanine radical cation sites as photo-oxidation products. The compounds also display efficient cell penetration with localization to the nucleus and show strong photocytotoxicity toward osteosarcoma cells. Thanks to a microscopic-based telomere dysfunction assay, which allows the direct visualization of DNA damage in cells, we brought the first evidence of forming photo-oxidative damage at telomeres in cellulo. This emphasizes interesting prospects for the development of future cancer phototherapies.

11.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36292935

RESUMO

SUMOylation is a reversible post-translational modification (PTM) involving covalent attachment of small ubiquitin-related modifier (SUMO) proteins to substrate proteins. Dysregulation of SUMOylation and deSUMOylation results in cellular malfunction and is linked to various diseases, such as cancer. Sentrin-specific proteases (SENPs) were identified for the maturation of SUMOs and the deconjugation of SUMOs from their substrate proteins. Hence, this is a promising target tackling the dysregulation of the SUMOylation process. Herein, we report the discovery of a novel protein-protein interaction (PPI) inhibitor for SENP1-SUMO1 by virtual screening and subsequent medicinal chemistry optimization of the hit molecule. The optimized inhibitor ZHAWOC8697 showed IC50 values of 8.6 µM against SENP1 and 2.3 µM against SENP2. With a photo affinity probe the SENP target was validated. This novel SENP inhibitor represents a new valuable tool for the study of SUMOylation processes and the SENP-associated development of small molecule-based treatment options.


Assuntos
Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina , Sumoilação , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Piruvatos , Endopeptidases/metabolismo , Peptídeo Hidrolases/metabolismo
12.
Chemistry ; 28(66): e202202251, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36005742

RESUMO

Photosensitizers that gather high photo-oxidizing power and strong visible-light absorption are of great interest in the development of new photo-chemotherapeutics. Indeed, such compounds constitute attractive candidates for the design of type I photosensitizers that are not dependent on the presence of oxygen. In this paper, we report on the synthesis and studies of new ruthenium(II) complexes that display strong visible-light absorption and can oxidize guanine residues under visible-light irradiation, as evidenced by nanosecond transient absorption spectroscopy. The reported compounds also tightly bind to G-quadruplex DNA structures from the human telomeric sequence (TTAGGG repeat). The kinetic and thermodynamic parameters of the interaction of these Ru(II) complexes with G-quadruplex and duplex DNA were studied thanks to luminescence titrations and bio-layer interferometry measurements, which revealed higher affinities towards the non-canonical G-quadruplex architecture. Docking experiments and non-covalent ionic analysis allowed us to gain information on the mode and the strength of the interaction of the compounds towards G-quadruplex and duplex DNA. The different studies emphasize the substantial influence of the position and the number of non-chelating nitrogen atoms on the interaction with both types of DNA secondary structures.


Assuntos
Complexos de Coordenação , Quadruplex G , Rutênio , Humanos , Rutênio/química , Complexos de Coordenação/química , Fármacos Fotossensibilizantes , DNA/química , Oxirredução
13.
Chem Commun (Camb) ; 58(58): 8057-8060, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35699027

RESUMO

Picosecond optical and X-ray absorption spectroscopies with time-dependent density functional theory revealed the reaction pathways, electronic and structural conformations of Ir-Co hydrogen evolution photocatalysts. The dyad bearing 2-phenylpyridine ancillary ligands produced more photoreduced Co(II) than its 2-phenylisoquinoline analogue. These findings are important for designs of earth-abundant photosensitizers for photocatalytic applications.


Assuntos
Irídio , Compostos Organometálicos , Cobalto , Eletrônica , Hidrogênio/química , Irídio/química , Cinética , Modelos Moleculares , Compostos Organometálicos/química
14.
Phys Chem Chem Phys ; 24(24): 15121-15128, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35699139

RESUMO

The ground state and photoinduced mixed valence states (GSMV and PIMV, respectively) of a dinuclear (Dp4+) ruthenium(II) complex bearing 2,2'-bipyridine ancillary ligands and a 2,2':4',4'':2'',2'''-quaterpyridine (Lp) bridging ligand were investigated using femtosecond and nanosecond transient absorption spectroscopy, electrochemistry and density functional theory. It was shown that the electronic coupling between the transiently light-generated Ru(II) and Ru(III) centers is HDA ∼ 450 cm-1 in the PIMV state, whereas the electrochemically generated GSMV state showed HDA ∼ 0 cm-1, despite virtually identical Ru-Ru distances. This stemmed from the changes in dihedral angles between the two bpy moieties of Lp, estimated at 30° and 4° for the GSMV and PIMV states, respectively, consistent with a through-bond rather than a through-space mechanism. Electronic coupling can be turned on by using visible light excitation, making Dp4+ a competitive candidate for photoswitching applications. A novel strategy to design photoinduced charge transfer molecular switches is proposed.

15.
Photochem Photobiol Sci ; 21(8): 1433-1444, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35595935

RESUMO

A series of nine [Ir(piq)2(LL)]+.PF6- photosensitizers, where piqH = 1-phenylisoquinoline, was developed and investigated for excited-state electron transfer with sacrificial electron donors that included triethanolamine (TEOA), triethylamine (TEA) and 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole (BIH) in acetonitrile. The photosensitizers were obtained in 57-82% yield starting from the common [Ir(piq)2µ-Cl]2 precursor and were all characterized by UV-Vis absorption as well as by steady-state, time-resolved spectroscopies and electrochemistry. The excited-state lifetimes ranged from 250 to 3350 ns and excited-state electron transfer quenching rate constants in the 109 M-1 s-1 range were obtained when BIH was used as electron donor. These quenching rate constants were three orders of magnitude higher than when TEA or TEOA was used. Steady-state photolysis in the presence of BIH showed that the stable and reversible accumulation of mono-reduced photosensitizers was possible, highlighting the potential use of these Ir-based photosensitizers in photocatalytic reactions relevant for solar fuels production.


Assuntos
Fármacos Fotossensibilizantes , Fotólise , Fármacos Fotossensibilizantes/química
16.
Chemistry ; 28(42): e202201220, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35608397

RESUMO

Controlling redox activity of judiciously appended redox units on a photo-sensitive molecular core is an effective strategy for visible light energy harvesting and storage. The first example of a photosensitizer - electron donor coordination compound in which the photoinduced electron transfer step is used for light to electrical energy conversion and storage is reported. A photo-responsive Ru-diimine module conjugated with redox-active catechol groups in [Ru(II)(phenanthroline-5,6-diolate)3 ]4- photosensitizer can mediate photoinduced catechol to dione oxidation in the presence of a sacrificial electron acceptor or at the surface of an electrode. Under potentiostatic condition, visible light triggered current density enhancement confirmed the light harvesting ability of this photosensitizer. Upon implementation in galvanostatic charge-discharge of a Li battery configuration, the storage capacity was found to be increased by 100 %, under 470 nm illumination with output power of 4.0 mW/cm-2 . This proof-of-concept molecular system marks an important milestone towards a new generation of molecular photo-rechargeable materials.

17.
Chem Commun (Camb) ; 58(33): 5116-5119, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35380138

RESUMO

Biolayer interferometry (BLI) and circular dichroism (CD) spectroscopy were used to investigate the interaction between previously reported i-motif DNA (i-DNA) ligands and folded or unfolded i-DNA in acidic (pH 5.5) and near-neutral (pH 6.5) conditions. We observed that although several ligands, in particular macrocyclic bis-acridine (BisA) and pyridostatin (PDS), showed good affinities for the telomeric i-motif forming sequence, none of the ligands displayed selective interactions with the i-DNA structure nor was able to promote its formation.


Assuntos
DNA , Interferometria , Dicroísmo Circular , DNA/química , Interferometria/métodos , Ligantes , Telômero
18.
Inorg Chem ; 61(13): 5245-5254, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35325530

RESUMO

Two new cyclometalated Ir(III) diimine complexes were used as photosensitizers for homogeneous hydrogen evolution reaction (HER). These complexes were characterized by electrochemistry, ultraviolet-visible absorption, time-resolved and steady-state photoluminescence spectroscopy as well as by theoretical methods. The metal-ligand-to-ligand charge transfer character of their lowest excited state was shown to be competent for efficient H2 photoproduction in the presence of [Co(dmgH)2(py)Cl] as the hydrogen evolution catalyst, triethanolamine as the sacrificial electron donor, and HBF4 as the proton source. Under optimized experimental conditions, both complexes displayed HER over a period of more than 90 h, with turnover numbers reaching up to 11,650, 10,600, and 174 molH2 molPS-1 under blue-, green-, and red-light irradiation, respectively. Both complexes showed higher stability and efficiency vs HER than most of the previously described systems of the same kind.

19.
J Am Chem Soc ; 143(38): 15661-15673, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34529421

RESUMO

Efficient excited-state electron transfer between an iron(III) photosensitizer and organic electron donors was realized with green light irradiation. This advance was enabled by the use of the previously reported iron photosensitizer, [Fe(phtmeimb)2]+ (phtmeimb = {phenyl[tris(3-methyl-imidazolin-2-ylidene)]borate}, that exhibited long-lived and luminescent ligand-to-metal charge-transfer (LMCT) excited states. A benchmark dehalogenation reaction was investigated with yields that exceed 90% and an enhanced stability relative to the prototypical photosensitizer [Ru(bpy)3]2+. The initial catalytic step is electron transfer from an amine to the photoexcited iron sensitizer, which is shown to occur with a large cage-escape yield. For LMCT excited states, this reductive electron transfer is vectorial and may be a general advantage of Fe(III) photosensitizers. In-depth time-resolved spectroscopic methods, including transient absorption characterization from the ultraviolet to the infrared regions, provided a quantitative description of the catalytic mechanism with associated rate constants and yields.

20.
Inorg Chem ; 60(1): 366-379, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33351615

RESUMO

Four trinuclear ruthenium(II) polypyridyl complexes were synthesized, and a detailed investigation of their excited-state properties was performed. The tritopic sexi-pyridine bridging ligands were obtained via para or meta substitution of a central 2,2'-bipyridine fragment. A para connection between the 2,2'-bipyridine chelating moieties of the bridging ligand led to a red-shifted MLCT absorption band in the visible part of the spectra, whereas the meta connection induced a broadening of the LC transitions in the UV region. A convergent energy transfer from the two peripheral metal centers to the central Ru(II) moiety was observed for all trinuclear complexes. These complexes were in thermal equilibrium with an upper-lying 3MLCT excited state over the investigated range of temperatures. For all complexes, deactivation via the 3MC excited state was absent at room temperature. Importantly, the connection in the para position for both central and peripheral 2,2'-bipyridines of the bridging ligand resulted in a trinuclear complex (Tpp) that absorbed more visible light, had a longer-lived excited state, and had a higher photoluminescence quantum yield than the parent [Ru(bpy)3]2+, despite its red-shifted photoluminescence. This behavior was attributed to the presence of a highly delocalized excited state for Tpp.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...