Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1456058, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39359253

RESUMO

Ulcerative colitis (UC) is a debilitating chronic disease marked by persistent inflammation and intestinal fibrosis. Despite the availability of various treatments, many patients fail to achieve long-term remission, underscoring a significant unmet therapeutic need. BMS-477118, a reversible inhibitor of dipeptidyl peptidase 4 (DPP4), has demonstrated anti-inflammatory properties in preclinical and clinical studies with minimal adverse effects compared to other antidiabetic agents. However, the potential benefits of BMS-477118 in chronic UC have not yet been explored. In this study, we aimed to investigate the effects of BMS-477118 in rats subjected to chronic dextran sodium sulfate (DSS) administration. Our findings indicate that BMS-477118 activates the interconnected positive feedback loop involving AMPK, SIRT1, and FOXO3a, improving histological appearance in injured rat colons. BMS-477118 also reduced fibrotic changes associated with the chronic nature of the animal model, alleviated macroscopic damage and disease severity, and improved the colon weight-to-length ratio. Additionally, BMS-477118 prevented DSS-induced weight loss and enhanced tight junction proteins. These effects, in conjunction with reduced oxidative stress and its potential anti-inflammatory, antiapoptotic, and autophagy-inducing properties, fostered prolonged survival in rats with chronic UC. To conclude, BMS-477118 has the potential to activate the AMPK/SIRT1/FOXO3a signaling pathway in inflamed colons. These results suggest that the AMPK/SIRT1/FOXO3a pathway could be a new therapeutic target for UC. Further research is mandatory to explore the therapeutic possibilities of this pathway. Additionally, continued studies on the therapeutic potential of BMS-477118 and other DPP4 inhibitors are promising for creating new treatments for various conditions, including UC in diabetic patients.

2.
Front Pharmacol ; 15: 1454829, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39309001

RESUMO

Introduction: Liver fibrosis is a significant global health burden that lacks effective therapies. It can progress to cirrhosis and hepatocellular carcinoma (HCC). Aberrant hedgehog pathway activation is a key driver of fibrogenesis and cancer, making hedgehog inhibitors potential antifibrotic and anticancer agents. Methods: We evaluated simvastatin and STA-9090, alone and combined, in rats fed a high-fat diet (HFD) and exposed to diethylnitrosamine and thioacetamide (DENA/TAA). Simvastatin inhibits HMG-CoA reductase, depleting cellular cholesterol required for Sonic hedgehog (Shh) modification and signaling. STA-9090 directly inhibits HSP90 chaperone interactions essential for Shh function. We hypothesized combining these drugs may provide liver protective effects through complementary targeting of the hedgehog pathway. Endpoints assessed included liver function tests, oxidative stress markers, histopathology, extracellular matrix proteins, inflammatory cytokines, and hedgehog signaling components. Results: HFD and DENA/TAA caused aberrant hedgehog activation, contributing to fibrotic alterations with elevated liver enzymes, oxidative stress, dyslipidemia, inflammation, and collagen deposition. Monotherapies with simvastatin or STA-9090 improved these parameters, while the combination treatment provided further enhancements, including improved survival, near-normal liver histology, and compelling hedgehog pathway suppression. Discussion: Our findings demonstrate the enhanced protective potential of combined HMG CoA reductase and HSP90 inhibition in rats fed a HFD and exposed to DENA and TAA. This preclinical study could help translate hedgehog-targeted therapies to clinical evaluation for treating this major unmet need.

3.
FASEB J ; 38(17): e70030, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39221499

RESUMO

Citicoline, a compound produced naturally in small amounts in the human body, assumes a pivotal role in phosphatidylcholine synthesis, a dynamic constituent of membranes of neurons. Across diverse models of brain injury and neurodegeneration, citicoline has demonstrated its potential through neuroprotective and anti-inflammatory effects. This review aims to elucidate citicoline's anti-inflammatory mechanism and its clinical implications in conditions such as ischemic stroke, head trauma, glaucoma, and age-associated memory impairment. Citicoline's anti-inflammatory prowess is rooted in its ability to stabilize cellular membranes, thereby curbing the excessive release of glutamate-a pro-inflammatory neurotransmitter. Moreover, it actively diminishes free radicals and inflammatory cytokines productions, which could otherwise harm neurons and incite neuroinflammation. It also exhibits the potential to modulate microglia activity, the brain's resident immune cells, and hinder the activation of NF-κB, a transcription factor governing inflammatory genes. Clinical trials have subjected citicoline to rigorous scrutiny in patients grappling with acute ischemic stroke, head trauma, glaucoma, and age-related memory impairment. While findings from these trials are mixed, numerous studies suggest that citicoline could confer improvements in neurological function, disability reduction, expedited recovery, and cognitive decline prevention within these cohorts. Additionally, citicoline boasts a favorable safety profile and high tolerability. In summary, citicoline stands as a promising agent, wielding both neuroprotective and anti-inflammatory potential across a spectrum of neurological conditions. However, further research is imperative to delineate the optimal dosage, treatment duration, and underlying mechanisms. Moreover, identifying specific patient subgroups most likely to reap the benefits of citicoline as a new therapy remains a critical avenue for exploration.


Assuntos
Citidina Difosfato Colina , Doenças Neuroinflamatórias , Citidina Difosfato Colina/uso terapêutico , Citidina Difosfato Colina/farmacologia , Humanos , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Animais , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Nootrópicos/uso terapêutico , Nootrópicos/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Relevância Clínica
4.
Life Sci ; 354: 122966, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39147320

RESUMO

Aberrant activation of the NLRP3 inflammasome is recognized to induce a chronic inflammatory response in the liver, ultimately leading to hepatic fibrosis. HSP90 is suggested to regulate NLRP3 activation and its downstream signaling. This study is the first to explore the potential therapeutic role of pimitespib in mitigating liver fibrosis in rats. The results of the study revealed that pimitespib effectively suppressed hepatic inflammation and fibrogenesis by modulating HSP90's control over the NFκB/NLRP3/caspase-1 axis. In vitro experiments demonstrated that pimitespib reduced LDH levels and increased hepatocyte survival, whereas in vivo, it prolonged the survival of rats with hepatic fibrosis. Additionally, pimitespib exhibited improvements in the function and microscopic characteristics of rat livers. Pimitespib effectively inhibited NFκB, which serves as the priming signal for NLRP3 activation. Pimitespib's inhibitory effect on NLRP3, identified as an HSP90 client protein, plays a central role in the observed anti-fibrotic effect. The simultaneous inhibition of both priming and activation signals of NLRP3 by pimitespib led to a reduction in caspase-1 activity and subsequent suppression of the N-terminal fragment of gasdermin D, ultimately constraining hepatocyte pyroptotic cell death. These diverse effects were associated with a decrease in the transcription of inflammatory mediators IL-1ß, IL-18, and TNF-α, as well as the fibrogenic mediators TGF-ß, TIMP-1, PDGF-BB, and Col1a1. Moreover, pimitespib induced the expression of HSP70, which could further contribute to the repression of fibrosis development. In summary, our findings provide an evolutionary perspective on managing liver fibrosis, positioning pimitespib as a promising candidate for anti-inflammatory and antifibrotic therapy.


Assuntos
Caspase 1 , Proteínas de Choque Térmico HSP90 , Cirrose Hepática , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/tratamento farmacológico , Proteínas de Choque Térmico HSP90/metabolismo , NF-kappa B/metabolismo , Masculino , Caspase 1/metabolismo , Transdução de Sinais , Ratos Sprague-Dawley , Inflamassomos/metabolismo , Sulfonamidas/farmacologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Hepatócitos/efeitos dos fármacos
5.
Int Immunopharmacol ; 141: 113000, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39191124

RESUMO

Liver inflammatory diseases are marked by serious complications. Notably, nicardipine (NCD) has demonstrated anti-inflammatory properties, but its benefits in liver inflammation have not been studied yet. However, the therapeutic efficacy of NCD is limited by its short half-life and low bioavailability. Therefore, we aimed to evaluate the potential of NCD-loaded chitosan nanoparticles (ChNPs) to improve its pharmacokinetic profile and hepatic accumulation. Four formulations of NCD-ChNPs were synthesized and characterized. The optimal formulation (NP2) exhibited a mean particle diameter of 172.6 ± 1.94 nm, a surface charge of +25.66 ± 0.93 mV, and an encapsulation efficiency of 88.86 ± 1.17 %. NP2 showed good physical stability as a lyophilized powder over three months. It displayed pH-sensitive release characteristics, releasing 77.15 ± 5.09 % of NCD at pH 6 (mimicking the inflammatory microenvironment) and 52.15 ± 3.65 % at pH 7.4, indicating targeted release in inflamed liver tissues. Pharmacokinetic and biodistribution studies revealed that NCD-ChNPs significantly prolonged NCD circulation time and enhanced its concentration in liver tissues compared to plain NCD. Additionally, the study investigated the protective effects of NCD-ChNPs in thioacetamide-induced liver injury in rats by modulating the NFκB/NLRP3/IL-1ß signaling axis. NCD-ChNPs effectively inhibited NFκB activation, reduced NLRP3 inflammasome activation, and subsequent release of IL-1ß, which correlated with improved hepatic function and reduced inflammation and oxidative stress. These findings highlight the potential of NCD-ChNPs as a promising nanomedicine strategy for the treatment of liver inflammatory diseases, warranting further investigation into their clinical applications, particularly in hypertensive patients with liver inflammatory conditions.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Quitosana , Interleucina-1beta , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Nanopartículas , Nicardipino , Transdução de Sinais , Tioacetamida , Animais , Quitosana/química , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nanopartículas/química , NF-kappa B/metabolismo , Interleucina-1beta/metabolismo , Masculino , Ratos , Nicardipino/uso terapêutico , Nicardipino/administração & dosagem , Nicardipino/farmacologia , Transdução de Sinais/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/administração & dosagem , Ratos Sprague-Dawley , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Distribuição Tecidual
6.
Eur J Pharm Sci ; 200: 106849, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38992452

RESUMO

Doxorubicin (DOX) is an anthracycline chemotherapy drug widely employed in the treatment of various cancers, known for its potent antineoplastic properties but often associated with dose-dependent cardiotoxicity, limiting its clinical use. This review explores the complex molecular details that determine the heart-protective effectiveness of carvedilol in relation to cardiotoxicity caused by DOX. The harmful effects of DOX on heart cells could include oxidative stress, DNA damage, iron imbalance, disruption of autophagy, calcium imbalance, apoptosis, dysregulation of topoisomerase 2-beta, arrhythmogenicity, and inflammatory responses. This review carefully reveals how carvedilol serves as a strong protective mechanism, strategically reducing each aspect of cardiac damage caused by DOX. Carvedilol's antioxidant capabilities involve neutralizing free radicals and adjusting crucial antioxidant enzymes. It skillfully manages iron balance, controls autophagy, and restores the calcium balance essential for cellular stability. Moreover, the anti-apoptotic effects of carvedilol are outlined through the adjustment of Bcl-2 family proteins and activation of the Akt signaling pathway. The medication also controls topoisomerase 2-beta and reduces the renin-angiotensin-aldosterone system, together offering a thorough defense against cardiotoxicity induced by DOX. These findings not only provide detailed understanding into the molecular mechanisms that coordinate heart protection by carvedilol but also offer considerable potential for the creation of targeted treatment strategies intended to relieve cardiotoxicity caused by chemotherapy.


Assuntos
Cardiotoxicidade , Carvedilol , Doxorrubicina , Carvedilol/farmacologia , Carvedilol/uso terapêutico , Humanos , Cardiotoxicidade/prevenção & controle , Cardiotoxicidade/etiologia , Doxorrubicina/efeitos adversos , Doxorrubicina/toxicidade , Animais , Antibióticos Antineoplásicos/efeitos adversos , Antibióticos Antineoplásicos/toxicidade , Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico , Carbazóis/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Propanolaminas/farmacologia
7.
FASEB J ; 38(13): e23813, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38976162

RESUMO

Beta-blockers are commonly used medications that antagonize ß-adrenoceptors, reducing sympathetic nervous system activity. Emerging evidence suggests that beta-blockers may also have anticancer effects and help overcome drug resistance in cancer treatment. This review summarizes the contribution of different isoforms of beta-adrenoceptors in cancer progression, the current preclinical and clinical data on associations between beta-blockers use and cancer outcomes, as well as their ability to enhance responses to chemotherapy and other standard therapies. We discuss proposed mechanisms, including effects on angiogenesis, metastasis, cancer stem cells, and apoptotic pathways. Overall, results from epidemiological studies and small clinical trials largely indicate the beneficial effects of beta-blockers on cancer progression and drug resistance. However, larger randomized controlled trials are needed to firmly establish their clinical efficacy and optimal utilization as adjuvant agents in cancer therapy.


Assuntos
Antagonistas Adrenérgicos beta , Resistencia a Medicamentos Antineoplásicos , Neoplasias , Humanos , Antagonistas Adrenérgicos beta/uso terapêutico , Antagonistas Adrenérgicos beta/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Animais , Doenças Cardiovasculares/tratamento farmacológico , Progressão da Doença , Receptores Adrenérgicos beta/metabolismo , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia
8.
FASEB J ; 38(11): e23734, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38847486

RESUMO

The cell cycle is tightly regulated to ensure controlled cell proliferation. Dysregulation of the cell cycle machinery is a hallmark of cancer that leads to unchecked growth. This review comprehensively analyzes key molecular regulators of the cell cycle and how they contribute to carcinogenesis when mutated or overexpressed. It focuses on cyclins, cyclin-dependent kinases (CDKs), CDK inhibitors, checkpoint kinases, and mitotic regulators as therapeutic targets. Promising strategies include CDK4/6 inhibitors like palbociclib, ribociclib, and abemaciclib for breast cancer treatment. Other possible targets include the anaphase-promoting complex/cyclosome (APC/C), Skp2, p21, and aurora kinase inhibitors. However, challenges with resistance have limited clinical successes so far. Future efforts should focus on combinatorial therapies, next-generation inhibitors, and biomarkers for patient selection. Targeting the cell cycle holds promise but further optimization is necessary to fully exploit it as an anti-cancer strategy across diverse malignancies.


Assuntos
Ciclo Celular , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Animais , Terapia de Alvo Molecular/métodos
9.
Eur J Pharm Sci ; 198: 106792, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38714237

RESUMO

Non-alcoholic steatohepatitis (NASH) is characterized by liver inflammation, fat accumulation, and collagen deposition. Due to the limited availability of effective treatments, there is a pressing need to develop innovative strategies. Given the complex nature of the disease, employing combination approaches is essential. Hedgehog signaling has been recognized as potentially promoting NASH, and cholesterol can influence this signaling by modifying the conformation of PTCH1 and SMO activity. HSP90 plays a role in the stability of SMO and GLI proteins. We revealed significant positive correlations between Hedgehog signaling proteins (Shh, SMO, GLI1, and GLI2) and both cholesterol and HSP90 levels. Herein, we investigated the novel combination of the cholesterol-lowering agent lovastatin and the HSP90 inhibitor PU-H71 in vitro and in vivo. The combination demonstrated a synergy score of 15.09 and an MSA score of 22.85, as estimated by the ZIP synergy model based on growth inhibition rates in HepG2 cells. In a NASH rat model induced by thioacetamide and a high-fat diet, this combination therapy extended survival, improved liver function and histology, and enhanced antioxidant defense. Additionally, the combination exhibited anti-inflammatory and anti-fibrotic potential by influencing the levels of TNF-α, TGF-ß, TIMP-1, and PDGF-BB. This effect was evident in the suppression of the Col1a1 gene expression and the levels of hydroxyproline and α-SMA. These favorable outcomes may be attributed to the combination's potential to inhibit key Hedgehog signaling molecules. In conclusion, exploring the applicability of this combination contributes to a more comprehensive understanding and improved management of NASH and other fibrotic disorders.


Assuntos
Proteínas de Choque Térmico HSP90 , Proteínas Hedgehog , Inibidores de Hidroximetilglutaril-CoA Redutases , Hepatopatia Gordurosa não Alcoólica , Transdução de Sinais , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Masculino , Humanos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Células Hep G2 , Dieta Hiperlipídica/efeitos adversos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Quimioterapia Combinada , Ratos , Ratos Sprague-Dawley , Colesterol/metabolismo
10.
Front Pharmacol ; 15: 1377980, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38808257

RESUMO

Liver fibrosis is a disease with a great global health and economic burden. Existing data highlights itraconazole (ITRCZ) as a potentially effective anti-fibrotic therapy. However, ITRCZ effect is hindered by several limitations, such as poor solubility and bioavailability. This study aimed to formulate and optimize chitosan nanoparticles (Cht NPs) loaded with ITRCZ as a new strategy for managing liver fibrosis. ITRCZ-Cht NPs were optimized utilizing a developed 22 full factorial design. The optimized formula (F3) underwent comprehensive in vitro and in vivo characterization. In vitro assessments revealed that F3 exhibited an entrapment efficiency of 89.65% ± 0.57%, a 169.6 ± 1.77 nm particle size, and a zeta potential of +15.93 ± 0.21 mV. Furthermore, in vitro release studies indicated that the release of ITRCZ from F3 adhered closely to the first-order model, demonstrating a significant enhancement (p-value < 0.05) in cumulative release compared to plain ITRCZ suspension. This formula increased primary hepatocyte survival and decreased LDH activity in vitro. The in vivo evaluation of F3 in a rat model of liver fibrosis revealed improved liver function and structure. ITRCZ-Cht NPs displayed potent antifibrotic effects as revealed by the downregulation of TGF-ß, PDGF-BB, and TIMP-1 as well as decreased hydroxyproline content and α-SMA immunoexpression. Anti-inflammatory potential was evident by reduced TNF-α and p65 nuclear translocation. These effects were likely ascribed to the modulation of Hedgehog components SMO, GLI1, and GLI2. These findings theorize ITRCZ-Cht NPs as a promising formulation for treating liver fibrosis. However, further investigations are deemed necessary.

11.
Front Cell Neurosci ; 18: 1336145, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699177

RESUMO

The orexins, also referred to as hypocretins, are neuropeptides that originate from the lateral hypothalamus (LH) region of the brain. They are composed of two small peptides, orexin-A, and orexin-B, which are broadly distributed throughout the central and peripheral nervous systems. Orexins are recognized to regulate diverse functions, involving energy homeostasis, the sleep-wake cycle, stress responses, and reward-seeking behaviors. Additionally, it is suggested that orexin-A deficiency is linked to sleepiness and narcolepsy. The orexins bind to their respective receptors, the orexin receptor type 1 (OX1R) and type 2 (OX2R), and activate different signaling pathways, which results in the mediation of various physiological functions. Orexin receptors are widely expressed in different parts of the body, including the skin, muscles, lungs, and bone marrow. The expression levels of orexins and their receptors play a crucial role in apoptosis, which makes them a potential target for clinical treatment of various disorders. This article delves into the significance of orexins and orexin receptors in the process of apoptosis, highlighting their expression levels and their potential contributions to different diseases. The article offers an overview of the existing understanding of the orexin/receptor system and how it influences the regulation of apoptosis.

12.
Heliyon ; 10(6): e27694, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38509956

RESUMO

Background: Bronchial asthma is a persistent inflammatory respiratory condition that restricts the passage of air and causes hyperresponsiveness. Chronic asthma can be classified into three categories: mild, moderate, and severe. Remodeling took place as the extracellular matrix accumulated in the walls of the airways. Inflammation occurs as a result of the damage caused by matrix metalloproteinase-2 (MMP-2) to basement membrane type IV collagen. The severity of asthma may be associated with miR-196a2. The objective of our study was to investigate the underlying mechanisms and clinical relevance of miR-196a2 and MMP-2 serum levels in relation to the severity of asthma. Methods: This study recruited 85 controls and 95 asthmatics classified as mild, moderate, or severe. Expression of miR-196a2 was measured by quantitative reverse transcriptase PCR. Using the enzyme-linked immunosorbent assay (ELISA), MMP-2, IL-6, and total immunoglobulin E (IgE) levels in the serum of asthmatics of various grades were compared to a control group. MMP-2's diagnostic and prognostic potential was determined using ROC curve analysis. This study also measured blood Eosinophils and PFTs. We examined MMP-2's connections with IgE, blood Eosinophils, and PFTs. Results: The current investigation found that miR-196a2 expression was significantly higher in the control group than in asthmatic patients as a whole. The study found that severe asthmatics had higher MMP-2, IL-6, and IgE serum levels than healthy controls. We identified the MMP-2 serum concentration cutoff with great sensitivity and specificity. Significant relationships between MMP-2 serum level and miR-196a2 expression in the patient group with severe asthmatics were found. The MMP-2, IL-6, and IgE serum levels were considerably higher in mild, moderate, and severe asthmatics than controls. The miR-196a2 expression and MMP-2 serum concentration correlated positively with IgE and blood eosinophils % and negatively with all lung function tests in the asthmatic patient group.Conclusion: the study revealed that the elevated miR-196a2 expression and serum concentration of MMP-2, IL-6, and IgE associated with elevated blood eosinophils % is associated with pathophysiology and degree of asthma severity. The miR-196a2 expression and MMP-2 serum concentration have a promising diagnostic and prognostic ability in bronchial asthma.

14.
FASEB J ; 38(4): e23480, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38354025

RESUMO

Accumulating evidence suggests that dysregulation of FOXO3a plays a significant role in the progression of various malignancies, including hepatocellular carcinoma (HCC). FOXO3a inactivation, driven by oncogenic stimuli, can lead to abnormal cell growth, suppression of apoptosis, and resistance to anticancer drugs. Therefore, FOXO3a emerges as a potential molecular target for the development of innovative treatments in the era of oncology. Linagliptin (LNGTN), a DPP-4 inhibitor known for its safe profile, has exhibited noteworthy anti-inflammatory and anti-oxidative properties in previous in vivo studies. Several potential molecular mechanisms have been proposed to explain these effects. However, the capacity of LNGTN to activate FOXO3a through AMPK activation has not been investigated. In our investigation, we examined the potential repurposing of LNGTN as a hepatoprotective agent against diethylnitrosamine (DENA) intoxication. Additionally, we assessed LNGTN's impact on apoptosis and autophagy. Following a 10-week administration of DENA, the liver underwent damage marked by inflammation and early neoplastic alterations. Our study presents the first experimental evidence demonstrating that LNGTN can reinstate the aberrantly regulated FOXO3a activity by elevating the nuclear fraction of FOXO3a in comparison to the cytosolic fraction, subsequent to AMPK activation. Moreover, noteworthy inactivation of NFκB induced by LNGTN was observed. These effects culminated in the initiation of apoptosis, the activation of autophagy, and the manifestation of anti-inflammatory, antiproliferative, and antiangiogenic outcomes. These effects were concomitant with improved liver function and microstructure. In conclusion, our findings open new avenues for the development of novel therapeutic strategies targeting the AMPK/FOXO3a signaling pathway in the management of chronic liver damage.


Assuntos
Carcinoma Hepatocelular , Inibidores da Dipeptidil Peptidase IV , Neoplasias Hepáticas , Animais , Ratos , Linagliptina/farmacologia , Proteínas Quinases Ativadas por AMP , Dietilnitrosamina/toxicidade , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/tratamento farmacológico , Hipoglicemiantes , Inibidores de Proteases , Antivirais , Anti-Inflamatórios
15.
Pathol Res Pract ; 253: 155086, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38176308

RESUMO

Liver cancer stands as the fourth leading global cause of death, and its prognosis remains grim due to the limited effectiveness of current medical interventions. Among the various pathways implicated in the development of hepatocellular carcinoma (HCC), the hedgehog signaling pathway has emerged as a crucial player. Itraconazole, a relatively safe and cost-effective antifungal medication, has gained attention for its potential as an anticancer agent. Its primary mode of action involves inhibiting the hedgehog pathway, yet its impact on HCC has not been elucidated. The main objective of this study was to investigate the effect of itraconazole on diethylnitrosamine-induced early-stage HCC in rats. Our findings revealed that itraconazole exhibited a multifaceted arsenal against HCC by downregulating the expression of key components of the hedgehog pathway, shh, smoothened (SMO), and GLI family zinc finger 1 (GLI1), and GLI2. Additionally, itraconazole extended survival and improved liver tissue structure, attributed mainly to its inhibitory effects on hedgehog signaling. Besides, itraconazole demonstrated a regulatory effect on Notch1, and Wnt/ß-catenin signaling molecules. Consequently, itraconazole displayed diverse anticancer properties, including anti-inflammatory, antiangiogenic, antiproliferative, and apoptotic effects, as well as the potential to induce autophagy. Moreover, itraconazole exhibited a promise to impede the transformation of epithelial cells into a more mesenchymal-like phenotype. Overall, this study emphasizes the significance of targeting the hedgehog pathway with itraconazole as a promising avenue for further exploration in clinical studies related to HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Proteínas Hedgehog/genética , Itraconazol/farmacologia , Itraconazol/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Via de Sinalização Wnt
16.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37631038

RESUMO

Idiopathic pulmonary fibrosis (IPF) is an irreversible and life-threatening lung disease of unknown etiology presenting only a few treatment options. TGF-ß signaling orchestrates a cascade of events driving pulmonary fibrosis (PF). Notably, recent research has affirmed the augmentation of TGF-ß receptor (TßR) signaling via HSP90 activation. HSP90, a molecular chaperone, adeptly stabilizes and folds TßRs, thus intricately regulating TGF-ß1 signaling. Our investigation illuminated the impact of alvespimycin, an HSP90 inhibitor, on TGF-ß-mediated transcriptional responses by inducing destabilization of TßRs. This outcome stems from the explicit interaction of TßR subtypes I and II with HSP90, where they are clients of this cellular chaperone. It is worth noting that regulation of proteasome-dependent degradation of TßRs is a critical standpoint in the termination of TGF-ß signal transduction. Oleuropein, the principal bioactive compound found in Olea europaea, is acknowledged for its role as a proteasome activator. In this study, our aim was to explore the efficacy of a combined therapy involving oleuropein and alvespimycin for the treatment of PF. We employed a PF rat model that was induced by intratracheal bleomycin infusion. The application of this dual therapy yielded a noteworthy impediment to the undesired activation of TGF-ß/mothers against decapentaplegic homologs 2 and 3 (SMAD2/3) signaling. Consequently, this novel combination showcased improvements in both lung tissue structure and function while also effectively restraining key fibrosis markers such as PDGF-BB, TIMP-1, ACTA2, col1a1, and hydroxyproline. On a mechanistic level, our findings unveiled that the antifibrotic impact of this combination therapy likely stemmed from the enhanced degradation of both TßRI and TßRII. In conclusion, the utilization of proteasomal activators in conjunction with HSP90 inhibitors ushers in a promising frontier for the management of PF.

17.
Artigo em Inglês | MEDLINE | ID: mdl-24200647

RESUMO

New Cu(II) and Zn(II) complexes of 2-(naphthalen-1-yloxy)-N'-(1-(pyridin-2-yl)ethylidene) acetohydrazide (HA2PNA) have been prepared and characterized by elemental analyses, spectral (IR, UV-visible, ESR and 1H NMR) as well as magnetic and thermal measurements. According to the data, the complexes assigned the formulae: [Cu(A2PNA)2]H2O and [Zn(A2PNA)(OAc)(H2O)], respectively. IR data revealed that the ligand acts as before ONN and after morever ONN mononegative tridentate via deprotonated carbonyl oxygen (CO) and both (CN)imine and (CN)pyridine nitrogen atoms. The bond lengths, bond angles, HOMO, LUMO, dipole moment and charges on the atoms have been calculated by using density functional theory (DFT) at B3LYP level with 6-31G and 6-31G(d,p) basis sets to confirm the geometry of the ligand and the investigated complexes. Also, the kinetic parameters were determined for each thermal degradation stage of the complexes using Coats-Redfern and Horowitz-Metzger methods. Moreover, the complexes have been tested for anti-inflammatory and analgesic activity in rat model of collagen adjuvant arthritis and compared with piroxicam. All the compounds showed a significant anti-inflammatory and analgesic effect versus piroxicam.


Assuntos
Analgésicos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Artrite/tratamento farmacológico , Complexos de Coordenação/uso terapêutico , Cobre/uso terapêutico , Hidrazinas/uso terapêutico , Zinco/uso terapêutico , Analgésicos/química , Animais , Anti-Inflamatórios/química , Complexos de Coordenação/química , Cobre/química , Hidrazinas/química , Modelos Moleculares , Piridinas/química , Piridinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Zinco/química
18.
Iran J Public Health ; 42(5): 504-10, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23802108

RESUMO

BACKGROUND: Adipose tissue secretes a large number of adipocytokines such as leptin, resistin, and adiponectin. Many of these hormones and cytokines are altered in obese individuals and may lead to disruption of the normal balance between cell proliferation, differentiation, and apoptosis. The aim of our work was to investigate the disturbance of secretion of adiponectin and resistin in de novo and relapsed acute lymphoblastic leukemia (ALL) in Egyptian children and determine whether adiponectin and resistin are implicated in increased risk relapse compared to healthy individuals. METHODS: Measurements of adiponectin and resistin were performed at diagnosis, in 32 patients with de novo ALL aged 3 to 18 years (mean 9.8 y) and 19 children with relapsed ALL aged 5 to 17 (mean 9.9 yr). 10 apparently healthy children with matched age and sex were used as controls. RESULTS: Mean adiponectin levels were low (P < 0.05), whereas mean resistin levels were high (P<0.05) at diagnosis and relapsed ALL (compared to healthy controls). A significant decrease of adiponectin levels was observed in relapsed ALL compared to de novo ALL. In contrast resistin was significantly increased in relapsed ALL compared to de novo patients. Adiponectin in ALL subjects inversely correlated with resistin level (r = -0.51, P < 0.001). CONCLUSION: Low adiponectin and high resistin level at diagnosis suggest their implication in ALL pathogenesis and may serve as potential clinically significant diagnostic markers to detect leukemic relapse.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...