RESUMO
Small headwater streams can mobilize large amounts of terrestrially derived dissolved organic matter (DOM). While the molecular composition of DOM has important controls on biogeochemical cycles and carbon cycling, how stationary landscape metrics affect DOM composition is poorly understood, particularly in relation to non-stationary effects from hydrological changes across seasons. Here, we apply a combination of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and absorbance spectroscopy to characterize stream DOM from 13 diverse watersheds across the central Canadian boreal forests and statistically relate DOM compositional characteristics to landscape topography and hydrological metrics. We found that watershed runoff across different surface physiographies produced DOM with distinctly different chemical compositions related to runoff pH. Specifically, streams in sandy soil watersheds contained more abundant aromatic, nitrogenated and sulfurized fractions of DOM, likely due to a combination of lower soil capacity to absorb DOM than other soil types and high conifer forest coverage that generated acidic litterfall in more sandy watersheds. In contrast, streams with more neutral pH in watersheds with shallow soils had DOM resembling low oxidized phenolic molecules mainly due to increased brush/alder and deciduous vegetation coverage in relatively steeper watersheds. However, as precipitation and flows increased in the fall, the overall water chemistry of streams became more similar as runoff pH increased, the overall chemical diversity of DOM in streams decreased, and stream DOM resembled fresher, lower molecular weight lignin material likely originating from freshly produced leaf litter. Together, our findings show that during hydrologically disconnected periods, pH and landscape characteristics have important controls on the mobilization of aromatic DOM but that many landscape-specific characteristics in the Canadian boreal forest are less influential on DOM processing during wetter conditions where chemically similar, plant-derived DOM signatures are preferentially mobilized. These findings collectively help predict the composition of DOM across diverse watersheds in the Canadian boreal to inform microbial and contaminant biogeochemical processes in downstream ecosystems.
Assuntos
Monitoramento Ambiental , Florestas , Rios , Monitoramento Ambiental/métodos , Canadá , Rios/química , Taiga , Substâncias Húmicas/análiseRESUMO
Forest insect outbreaks cause significant reductions in the forest canopy through defoliation and tree mortality that modify the storage and flow of water, potentially altering catchment runoff and stream discharge patterns. Despite a growing understanding of the impacts of insect outbreaks on the hydrology of broadleaf forests, little is known about these impacts to catchment hydrology in northern conifer-dominated forests. We measured the effects of cumulative defoliation by spruce budworm (Choristoneura fumiferana) on stream discharge and runoff in 12 experimental catchments (6.33-9.85 km2) across the central Gaspé Peninsula in eastern Québec, Canada over a three-year period (2019-2021). Six catchments were aerially treated with BtK (Bacillus thuringiensis kurstaki) insecticide to suppress the outbreak and six catchments were left untreated, leading to a defoliation gradient across the study sites. Stage-discharge relationships were established between June and October from 2019 to 2021. Stream volumetric discharge (r = 0.71, p < 0.01, t(34) = 5.85), runoff (r = 0.55, p < 0.01, t(34) = 3.81) and runoff ratios (r = 0.67, p < 0.01, t(33) = 5.19) were all strongly positively correlated with cumulative defoliation intensity, likely by reducing available water storage in the catchment and therefore enhancing runoff generation. Seasonally, volumetric discharge, runoff, and runoff ratios were more strongly correlated with defoliation in the summer than autumn months, likely because available catchment storage was more limited following the freshet. Overall, we found that insect defoliation impacts forested catchment hydrology similar to other landscape disturbances, and such consequences should be considered in forest management and the control of forest insect outbreaks.
Assuntos
Mariposas , Picea , Traqueófitas , Animais , Florestas , ÁguaRESUMO
Concentrations of dissolved organic carbon (DOC) have increased in lakes throughout North America and Europe over the last three decades. Recovery from acid deposition and climate change have both been postulated as the primary mechanisms for the increase in DOC. To provide a clearer insight into the mechanisms responsible for increasing DOC we evaluated changes in lake and peat porewater chemistry collected in an area of approximately 33,000 km2 surrounding Sudbury, Ontario, a region undergoing dramatic recovery from acidic deposition. DOC concentrations varied considerably among the 44 lakes and over time (samples annually from 1981 to 2018), but the Sens Slope value showed a strong increase in lake DOC concentration over time, at 0.05 mg/ L y-1 (p < 0.001) that was related to increasing pH [0.03 units y-1, p < 0.001] and decreasing lake SO4 concentration [-0.24 mg/ L y-1; p < 0.001], but showed no relationship with temperature or precipitation. Similar strong relationships between DOC and pH (positive) and SO4 (negative) were observed in 18 peatlands sampled in the region. In a spatial analysis of 82 lakes sampled in 2018, concentrations of DOC in lakes were highest in flatter catchments with a greater wetland area, suggesting that wetlands are a major source of DOC in lakes. Optical properties of DOC obtained from extracts of wetland and upland soils at 6 catchments could be distinguished, primarily due to upland litter extracts having distinct optical properties from mineral soils or wetland soils. Optical properties of DOC in lakes however were inconsistent with those measured in soil extracts indicating that they are not useful for distinguishing DOC sources in these lakes. A predictive model was developed to explain DOC trends within Sudbury lakes using a stepwise linear regression combined with hierarchical partitioning to confirm the most influential processes on DOC. Almost 50% of the variability in DOC change in the 44 lakes was explained by the magnitude in lake pH change, catchment size and catchment sparse tree cover showing that recovery from acidic deposition is overwhelmingly responsible for increasing DOC in Sudbury lakes.
RESUMO
Freshwater ecosystems are a major source of methane (CH4), contributing 0.65 Pg (in CO2 equivalents) yr-1 towards global carbon emissions and offsetting ~25% of the terrestrial carbon sink. Most freshwater CH4 emissions come from littoral sediments, where large quantities of plant material are decomposed. Climate change is predicted to shift plant community composition, and thus change the quality of inputs into detrital food webs, with the potential to affect CH4 production. Here we find that variation in phenol availability from decomposing organic matter underlies large differences in CH4 production in lake sediments. Production is at least 400-times higher from sediments composed of macrophyte litter compared to terrestrial sources because of inhibition of methanogenesis by phenol leachates. Our results now suggest that earth system models and carbon budgets should consider the effects of plant communities on sediment chemistry and ultimately CH4 emissions at a global scale.