Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37961428

RESUMO

G-quadruplexes (G4s) form throughout the genome and influence important cellular processes, but their deregulation can challenge DNA replication fork progression and threaten genome stability. Here, we demonstrate an unexpected, dual role for the dsDNA translocase HLTF in G4 metabolism. First, we find that HLTF is enriched at G4s in the human genome and suppresses G4 accumulation throughout the cell cycle using its ATPase activity. This function of HLTF affects telomere maintenance by restricting alternative lengthening of telomeres, a process stimulated by G4s. We also show that HLTF and MSH2, a mismatch repair factor that binds G4s, act in independent pathways to suppress G4s and to promote resistance to G4 stabilization. In a second, distinct role, HLTF restrains DNA synthesis upon G4 stabilization by suppressing PrimPol-dependent repriming. Together, the dual functions of HLTF in the G4 response prevent DNA damage and potentially mutagenic replication to safeguard genome stability.

2.
Nat Commun ; 13(1): 6579, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323660

RESUMO

The limited efficacy of immune checkpoint inhibitor treatment in triple-negative breast cancer (TNBC) patients is attributed to sparse or unresponsive tumor-infiltrating lymphocytes, but the mechanisms that lead to a therapy resistant tumor immune microenvironment are incompletely known. Here we show a strong correlation between MYC expression and loss of immune signatures in human TNBC. In mouse models of TNBC proficient or deficient of breast cancer type 1 susceptibility gene (BRCA1), MYC overexpression dramatically decreases lymphocyte infiltration in tumors, along with immune signature remodelling. MYC-mediated suppression of inflammatory signalling induced by BRCA1/2 inactivation is confirmed in human TNBC cell lines. Moreover, MYC overexpression prevents the recruitment and activation of lymphocytes in both human and mouse TNBC co-culture models. Chromatin-immunoprecipitation-sequencing reveals that MYC, together with its co-repressor MIZ1, directly binds promoters of multiple interferon-signalling genes, resulting in their downregulation. MYC overexpression thus counters tumor growth inhibition by a Stimulator of Interferon Genes (STING) agonist via suppressing induction of interferon signalling. Together, our data reveal that MYC suppresses innate immunity and facilitates tumor immune escape, explaining the poor immunogenicity of MYC-overexpressing TNBCs.


Assuntos
Neoplasias de Mama Triplo Negativas , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Interferons , Linfócitos do Interstício Tumoral , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/metabolismo , Microambiente Tumoral/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo
3.
Nature ; 612(7938): 148-155, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36424410

RESUMO

Oncoproteins of the MYC family drive the development of numerous human tumours1. In unperturbed cells, MYC proteins bind to nearly all active promoters and control transcription by RNA polymerase II2,3. MYC proteins can also coordinate transcription with DNA replication4,5 and promote the repair of transcription-associated DNA damage6, but how they exert these mechanistically diverse functions is unknown. Here we show that MYC dissociates from many of its binding sites in active promoters and forms multimeric, often sphere-like structures in response to perturbation of transcription elongation, mRNA splicing or inhibition of the proteasome. Multimerization is accompanied by a global change in the MYC interactome towards proteins involved in transcription termination and RNA processing. MYC multimers accumulate on chromatin immediately adjacent to stalled replication forks and surround FANCD2, ATR and BRCA1 proteins, which are located at stalled forks7,8. MYC multimerization is triggered in a HUWE16 and ubiquitylation-dependent manner. At active promoters, MYC multimers block antisense transcription and stabilize FANCD2 association with chromatin. This limits DNA double strand break formation during S-phase, suggesting that the multimerization of MYC enables tumour cells to proliferate under stressful conditions.


Assuntos
RNA Polimerases Dirigidas por DNA , Humanos , Cromatina/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Regiões Promotoras Genéticas/genética , RNA Polimerase II/metabolismo , Transcrição Gênica , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Quebras de DNA de Cadeia Dupla , Fase S , Sítios de Ligação , RNA Mensageiro/biossíntese
4.
Mol Cell ; 82(1): 159-176.e12, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34847357

RESUMO

The MYCN oncoprotein drives the development of numerous neuroendocrine and pediatric tumors. Here we show that MYCN interacts with the nuclear RNA exosome, a 3'-5' exoribonuclease complex, and recruits the exosome to its target genes. In the absence of the exosome, MYCN-directed elongation by RNA polymerase II (RNAPII) is slow and non-productive on a large group of cell-cycle-regulated genes. During the S phase of MYCN-driven tumor cells, the exosome is required to prevent the accumulation of stalled replication forks and of double-strand breaks close to the transcription start sites. Upon depletion of the exosome, activation of ATM causes recruitment of BRCA1, which stabilizes nuclear mRNA decapping complexes, leading to MYCN-dependent transcription termination. Disruption of mRNA decapping in turn activates ATR, indicating transcription-replication conflicts. We propose that exosome recruitment by MYCN maintains productive transcription elongation during S phase and prevents transcription-replication conflicts to maintain the rapid proliferation of neuroendocrine tumor cells.


Assuntos
Núcleo Celular/enzimologia , Proliferação de Células , Replicação do DNA , Exossomos/enzimologia , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/enzimologia , RNA Polimerase II/metabolismo , Transcrição Gênica , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/genética , Quebras de DNA de Cadeia Dupla , Exorribonucleases/genética , Exorribonucleases/metabolismo , Exossomos/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos , Proteína Proto-Oncogênica N-Myc/genética , Células NIH 3T3 , Neuroblastoma/genética , Neuroblastoma/patologia , Regiões Promotoras Genéticas , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , RNA Polimerase II/genética , Terminação da Transcrição Genética
5.
Mol Cell ; 81(4): 830-844.e13, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33453168

RESUMO

The MYC oncoprotein globally affects the function of RNA polymerase II (RNAPII). The ability of MYC to promote transcription elongation depends on its ubiquitylation. Here, we show that MYC and PAF1c (polymerase II-associated factor 1 complex) interact directly and mutually enhance each other's association with active promoters. PAF1c is rapidly transferred from MYC onto RNAPII. This transfer is driven by the HUWE1 ubiquitin ligase and is required for MYC-dependent transcription elongation. MYC and HUWE1 promote histone H2B ubiquitylation, which alters chromatin structure both for transcription elongation and double-strand break repair. Consistently, MYC suppresses double-strand break accumulation in active genes in a strictly PAF1c-dependent manner. Depletion of PAF1c causes transcription-dependent accumulation of double-strand breaks, despite widespread repair-associated DNA synthesis. Our data show that the transfer of PAF1c from MYC onto RNAPII efficiently couples transcription elongation with double-strand break repair to maintain the genomic integrity of MYC-driven tumor cells.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myc/metabolismo , Elongação da Transcrição Genética , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Linhagem Celular Tumoral , Histonas/genética , Histonas/metabolismo , Humanos , Proteínas Proto-Oncogênicas c-myc/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
6.
Mol Cell ; 74(4): 674-687.e11, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-30928206

RESUMO

The MYC oncoprotein binds to promoter-proximal regions of virtually all transcribed genes and enhances RNA polymerase II (Pol II) function, but its precise mode of action is poorly understood. Using mass spectrometry of both MYC and Pol II complexes, we show here that MYC controls the assembly of Pol II with a small set of transcription elongation factors that includes SPT5, a subunit of the elongation factor DSIF. MYC directly binds SPT5, recruits SPT5 to promoters, and enables the CDK7-dependent transfer of SPT5 onto Pol II. Consistent with known functions of SPT5, MYC is required for fast and processive transcription elongation. Intriguingly, the high levels of MYC that are expressed in tumors sequester SPT5 into non-functional complexes, thereby decreasing the expression of growth-suppressive genes. Altogether, these results argue that MYC controls the productive assembly of processive Pol II elongation complexes and provide insight into how oncogenic levels of MYC permit uncontrolled cellular growth.


Assuntos
Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas c-myc/genética , RNA Polimerase II/genética , Transcrição Gênica , Fatores de Elongação da Transcrição/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Quinases Ciclina-Dependentes/genética , Chaperonas de Histonas/genética , Humanos , Neoplasias/genética , Regiões Promotoras Genéticas , Quinase Ativadora de Quinase Dependente de Ciclina
7.
Rheumatology (Oxford) ; 55(4): 689-96, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26667214

RESUMO

OBJECTIVE: Cryopyrin-associated periodic syndrome (CAPS) is a heterogeneous group of diseases characterized by excessive IL-1ß release resulting in severe systemic and organ inflammation. Canakinumab targets IL-1ß and is approved at standard dose for children and adults with all CAPS phenotypes. Limited data are available for the real-life effectiveness of canakinumab in patients living with CAPS. Therefore the aim of the study was to evaluate the real-life dosing and effectiveness of canakinumab in CAPS. METHODS: A multi-centre study of consecutive children and adults with CAPS treated with canakinumab was performed. Demographics, CAPS phenotype and disease activity, inflammatory markers and canakinumab treatment strategy were recorded. Treatment response was assessed using CAPS disease activity scores, CRP and/or serum amyloid A levels. Comparisons between age groups, CAPS phenotypes and centres were conducted. RESULTS: A total of 68 CAPS patients at nine centres were included. All CAPS phenotypes were represented. Thirty-seven (54%) patients were females, the median age was 25 years and 27 (40%) were children, and the median follow-up was 28 months. Overall, complete response (CR) was seen in 72% of CAPS patients, significantly less often in severe (14%) than in mild CAPS phenotypes (79%). Only 53% attained CR on standard dose canakinumab. Dose increase was more commonly required in children (56%) than in adults (22%). Centres with a treat-to-target approach had significantly higher CR rates (94 vs 50%). CONCLUSION: Real-life effectiveness of canakinumab in CAPS was significantly lower than in controlled trials. Treat-to-target strategies may improve the outcome of children and adults living with CAPS.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Síndromes Periódicas Associadas à Criopirina/tratamento farmacológico , Adolescente , Adulto , Fatores Etários , Idoso , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais Humanizados , Criança , Pré-Escolar , Relação Dose-Resposta a Droga , Feminino , Humanos , Interleucina-1beta/antagonistas & inibidores , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Adulto Jovem
8.
Clin Immunol ; 157(1): 56-64, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25596455

RESUMO

Cryopyrin-associated periodic syndromes (CAPS) are characterized by recurrent episodes of systemic inflammation caused by mutations in the NLRP3 gene. Besides confirmed pathogenic NLRP3 mutations, patients with CAPS-like symptoms frequently show low penetrance variants in NLRP3. The disease relevance of these variants is inconsistent. In this study, we investigated if an inflammasome activation assay differentiates between patients with confirmed pathogenic CAPS mutations, patients with low penetrance NLRP3 variants (V198M and Q703K) and healthy controls. The release of mature IL-1ß, IL-18, and caspase-1 into cell culture supernatants after 4h of inflammasome stimulation was significantly increased in patients with confirmed pathogenic CAPS mutations compared to low penetrance NLRP3 variants and controls. IL-1ß secretion in CAPS patients correlated with disease severity. This inflammasome activation assay differentiates between autoinflammation patients with confirmed pathogenic CAPS mutations and patients with low penetrance NLRP3 variants, and points towards alternative pathophysiological mechanisms in low penetrance NLRP3 variants.


Assuntos
Bioensaio/métodos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Variação Genética , Mutação/genética , Adulto , Síndromes Periódicas Associadas à Criopirina/genética , Síndromes Periódicas Associadas à Criopirina/fisiopatologia , Feminino , Humanos , Inflamassomos/genética , Inflamassomos/metabolismo , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA