Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(24)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38916268

RESUMO

Here, we investigate the hypothesis that despite the existence of at least two high-density amorphous ices, only one high-density liquid state exists in water. We prepared a very-high-density amorphous ice (VHDA) sample and rapidly increased its temperature to around 205 ± 10 K using laser-induced isochoric heating. This temperature falls within the so-called "no-man's land" well above the glass-liquid transition, wherein the IR laser pulse creates a metastable liquid state. Subsequently, this high-density liquid (HDL) state of water decompresses over time, and we examined the time-dependent structural changes using short x-ray pulses from a free electron laser. We observed a liquid-liquid transition to low-density liquid water (LDL) over time scales ranging from 20 ns to 3 µs, consistent with previous experimental results using expanded high-density amorphous ice (eHDA) as the initial state. In addition, the resulting LDL derived both from VHDA and eHDA displays similar density and degree of inhomogeneity. Our observation supports the idea that regardless of the initial annealing states of the high-density amorphous ices, the same HDL and final LDL states are reached at temperatures around 205 K.

2.
Nano Lett ; 24(21): 6417-6424, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38710072

RESUMO

The functional properties of complex oxides, including magnetism and ferroelectricity, are closely linked to subtle structural distortions. Ultrafast optical excitations provide the means to manipulate structural features and ultimately to affect the functional properties of complex oxides with picosecond-scale precision. We report that the lattice expansion of multiferroic BiFeO3 following above-bandgap optical excitation leads to distortion of the oxygen octahedral rotation (OOR) pattern. The continuous coupling between OOR and strain was probed using time-resolved X-ray free-electron laser diffraction with femtosecond time resolution. Density functional theory calculations predict a relationship between the OOR and the elastic strain consistent with the experiment, demonstrating a route to employing this approach in a wider range of systems. Ultrafast control of the functional properties of BiFeO3 thin films is enabled by this approach because the OOR phenomena are related to ferroelectricity, and via the Fe-O-Fe bond angles, the superexchange interaction between Fe atoms.

3.
Sci Adv ; 10(18): eadl6409, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701215

RESUMO

Ultrafast photoinduced melting provides an essential platform for studying nonequilibrium phase transitions by linking the kinetics of electron dynamics to ionic motions. Knowledge of dynamic balance in their energetics is essential to understanding how the ionic reaction is influenced by femtosecond photoexcited electrons with notable time lag depending on reaction mechanisms. Here, by directly imaging fluctuating density distributions and evaluating the ionic pressure and Gibbs free energy from two-temperature molecular dynamics that verified experimental results, we uncovered that transient ionic pressure, triggered by photoexcited electrons, controls the overall melting kinetics. In particular, ultrafast nonequilibrium melting can be described by the reverse nucleation process with voids as nucleation seeds. The strongly driven solid-to-liquid transition of metallic gold is successfully explained by void nucleation facilitated by photoexcited electron-initiated ionic pressure, establishing a solid knowledge base for understanding ultrafast nonequilibrium kinetics.

4.
J Synchrotron Radiat ; 31(Pt 3): 469-477, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38517754

RESUMO

Various X-ray techniques are employed to investigate specimens in diverse fields. Generally, scattering and absorption/emission processes occur due to the interaction of X-rays with matter. The output signals from these processes contain structural information and the electronic structure of specimens, respectively. The combination of complementary X-ray techniques improves the understanding of complex systems holistically. In this context, we introduce a multiplex imaging instrument that can collect small-/wide-angle X-ray diffraction and X-ray emission spectra simultaneously to investigate morphological information with nanoscale resolution, crystal arrangement at the atomic scale and the electronic structure of specimens.

5.
Nat Chem ; 16(5): 693-699, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38528103

RESUMO

Crystalline systems consisting of small-molecule building blocks have emerged as promising materials with diverse applications. It is of great importance to characterize not only their static structures but also the conversion of their structures in response to external stimuli. Femtosecond time-resolved crystallography has the potential to probe the real-time dynamics of structural transitions, but, thus far, this has not been realized for chemical reactions in non-biological crystals. In this study, we applied time-resolved serial femtosecond crystallography (TR-SFX), a powerful technique for visualizing protein structural dynamics, to a metal-organic framework, consisting of Fe porphyrins and hexazirconium nodes, and elucidated its structural dynamics. The time-resolved electron density maps derived from the TR-SFX data unveil trifurcating structural pathways: coherent oscillatory movements of Zr and Fe atoms, a transient structure with the Fe porphyrins and Zr6 nodes undergoing doming and disordering movements, respectively, and a vibrationally hot structure with isotropic structural disorder. These findings demonstrate the feasibility of using TR-SFX to study chemical systems.

6.
Acta Crystallogr D Struct Biol ; 80(Pt 3): 194-202, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38411550

RESUMO

The combination of X-ray free-electron lasers (XFELs) with serial femtosecond crystallography represents cutting-edge technology in structural biology, allowing the study of enzyme reactions and dynamics in real time through the generation of `molecular movies'. This technology combines short and precise high-energy X-ray exposure to a stream of protein microcrystals. Here, the XFEL structure of carbonic anhydrase II, a ubiquitous enzyme responsible for the interconversion of CO2 and bicarbonate, is reported, and is compared with previously reported NMR and synchrotron X-ray and neutron single-crystal structures.


Assuntos
Anidrase Carbônica II , Anidrase Carbônica II/química , Cristalografia por Raios X , Proteínas/química , Síncrotrons , Raios X , Humanos
7.
IUCrJ ; 10(Pt 6): 656-661, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37903100

RESUMO

X-ray structural science is undergoing a revolution driven by the emergence of X-ray Free-electron Laser (XFEL) facilities. The structures of crystalline solids can now be studied on the picosecond time scale relevant to phonons, atomic vibrations which travel at acoustic velocities. In the work presented here, X-ray diffuse scattering is employed to characterize the time dependence of the liquid phase emerging from femtosecond laser-induced melting of polycrystalline gold thin films using an XFEL. In a previous analysis of Bragg peak profiles, we showed the supersonic disappearance of the solid phase and presented a model of pumped hot electrons carrying energy from the gold surface to scatter at internal grain boundaries. This generates melt fronts propagating relatively slowly into the crystal grains. By conversion of diffuse scattering to a partial X-ray pair distribution function, we demonstrate that it has the characteristic shape obtained by Fourier transformation of the measured F(Q). The diffuse signal fraction increases with a characteristic rise-time of 13 ps, roughly independent of the incident pump fluence and consequent final liquid fraction. This suggests the role of further melt-front nucleation processes beyond grain boundaries.

8.
Opt Express ; 31(16): 26969-26979, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37710545

RESUMO

We successfully demonstrated the generation of single-cycle terahertz (THz) pulses through tilted-pulse-front (TPF) pumping using a reflective echelon in a lithium niobate crystal. By optimizing the pump pulse duration using a chirp, we achieved a maximum pump-to-THz conversion efficiency of 0.39%. However, we observed that the saturation behavior began at a relatively low pump energy (0.37 mJ), corresponding to a pump intensity of 22 GW/cm2. To elucidate this behavior, we measured the near- and far-field THz beam profiles and found variations in their beam characteristics, such as the beam size, location, and divergence angle in the plane of the tilted pulse direction, with the pump energy (intensity). This nonlinear behavior is attributed to the reduced effective interaction length, which ultimately leads to the saturation of THz generation. The results obtained from our study suggest that it is feasible to develop an effective THz source using echelon-based TPF pumping while also considering the impact of nonlinear saturation effects.

9.
IUCrJ ; 10(Pt 6): 700-707, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37772598

RESUMO

Photoinduced nonequilibrium phase transitions have stimulated interest in the dynamic interactions between electrons and crystalline ions, which have long been overlooked within the Born-Oppenheimer approximation. Ultrafast melting before lattice thermalization prompted researchers to revisit this issue to understand ultrafast photoinduced weakening of the crystal bonding. However, the absence of direct evidence demonstrating the role of orbital dynamics in lattice disorder leaves it elusive. By performing time-resolved resonant X-ray scattering with an X-ray free-electron laser, we directly monitored the ultrafast dynamics of bonding orbitals of Ge to drive photoinduced melting. Increased photoexcitation of bonding electrons amplifies the orbital disturbance to expedite the lattice disorder approaching the sub-picosecond scale of the nonthermal regime. The lattice disorder time shows strong nonlinear dependence on the laser fluence with a crossover behavior from thermal-driven to nonthermal-dominant kinetics, which is also verified by ab initio and two-temperature molecular dynamics simulations. This study elucidates the impact of bonding orbitals on lattice stability with a unifying interpretation on photoinduced melting.

10.
Nat Chem ; 15(11): 1607-1615, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37563326

RESUMO

The photoisomerization reaction of a fluorescent protein chromophore occurs on the ultrafast timescale. The structural dynamics that result from femtosecond optical excitation have contributions from vibrational and electronic processes and from reaction dynamics that involve the crossing through a conical intersection. The creation and progression of the ultrafast structural dynamics strongly depends on optical and molecular parameters. When using X-ray crystallography as a probe of ultrafast dynamics, the origin of the observed nuclear motions is not known. Now, high-resolution pump-probe X-ray crystallography reveals complex sub-ångström, ultrafast motions and hydrogen-bonding rearrangements in the active site of a fluorescent protein. However, we demonstrate that the measured motions are not part of the photoisomerization reaction but instead arise from impulsively driven coherent vibrational processes in the electronic ground state. A coherent-control experiment using a two-colour and two-pulse optical excitation strongly amplifies the X-ray crystallographic difference density, while it fully depletes the photoisomerization process. A coherent control mechanism was tested and confirmed the wave packets assignment.


Assuntos
Rodopsina , Vibração , Movimento (Física) , Ligação de Hidrogênio
11.
Adv Mater ; 35(36): e2303032, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37391904

RESUMO

Ultrafast optical manipulation of magnetic phenomena is an exciting achievement of mankind, expanding one's horizon of knowledge toward the functional nonequilibrium states. The dynamics acting on an extremely short timescale push the detection limits that reveal fascinating light-matter interactions for nonthermal creation of effective magnetic fields. While some cases are benchmarked by emergent transient behaviors, otherwise identifying the nonthermal effects remains challenging. Here, a femtosecond time-resolved resonant magnetic X-ray diffraction experiment is introduced, which uses an X-ray free-electron laser (XFEL) to distinguish between the effective field and the photoinduced thermal effect. It is observed that a multiferroic Y-type hexaferrite exhibits magnetic Bragg peak intensity oscillations manifesting entangled antiferromagnetic (AFM) and ferromagnetic (FM) Fourier components of a coherent AFM magnon. The magnon trajectory constructed in 3D space and time domains is decisive to evince ultrafast field formation preceding the lattice thermalization. A remarkable impact of photoexcitation across the electronic bandgap is directly unraveled, amplifying the photomagnetic coupling that is one of the highest among AFM dielectrics. Leveraging the above-bandgap photoexcitation, this energy-efficient optical process further suggests a novel photomagnetic control of ferroelectricity in multiferroics.

12.
Nat Commun ; 14(1): 3313, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316494

RESUMO

The phase transition between water and ice is ubiquitous and one of the most important phenomena in nature. Here, we performed time-resolved x-ray scattering experiments capturing the melting and recrystallization dynamics of ice. The ultrafast heating of ice I is induced by an IR laser pulse and probed with an intense x-ray pulse which provided us with direct structural information on different length scales. From the wide-angle x-ray scattering (WAXS) patterns, the molten fraction, as well as the corresponding temperature at each delay, were determined. The small-angle x-ray scattering (SAXS) patterns, together with the information extracted from the WAXS analysis, provided the time-dependent change of the size and the number of liquid domains. The results show partial melting (~13%) and superheating of ice occurring at around 20 ns. After 100 ns, the average size of the liquid domains grows from about 2.5 nm to 4.5 nm by the coalescence of approximately six adjacent domains. Subsequently, we capture the recrystallization of the liquid domains, which occurs on microsecond timescales due to the cooling by heat dissipation and results to a decrease of the average liquid domain size.

13.
Nano Lett ; 23(4): 1481-1488, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36723175

RESUMO

Femtosecond laser pulses drive nonequilibrium phase transitions via reaction paths hidden in thermal equilibrium. This stimulates interest to understand photoinduced ultrafast melting processes, which remains incomplete due to challenges in resolving accompanied kinetics at the relevant space-time resolution. Here, by newly establishing a multiplexing femtosecond X-ray probe, we have successfully revealed ultrafast energy transfer processes in confined Au nanospheres. Real-time images of electron density distributions with the corresponding lattice structures elucidate that the energy transfer begins with subpicosecond melting at the specimen boundary earlier than the lattice thermalization, and proceeds by forming voids. Two temperature molecular dynamics simulations uncovered the presence of both heterogeneous melting with the melting front propagation from surface and grain boundaries and homogeneous melting with random melting seeds and nanoscale voids. Supported by experimental and theoretical results, we provide a comprehensive atomic-scale picture that accounts for the ultrafast laser-induced melting and evaporation kinetics.

14.
Nat Commun ; 14(1): 442, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707522

RESUMO

Recent experiments continue to find evidence for a liquid-liquid phase transition (LLPT) in supercooled water, which would unify our understanding of the anomalous properties of liquid water and amorphous ice. These experiments are challenging because the proposed LLPT occurs under extreme metastable conditions where the liquid freezes to a crystal on a very short time scale. Here, we analyze models for the LLPT to show that coexistence of distinct high-density and low-density liquid phases may be observed by subjecting low-density amorphous (LDA) ice to ultrafast heating. We then describe experiments in which we heat LDA ice to near the predicted critical point of the LLPT by an ultrafast infrared laser pulse, following which we measure the structure factor using femtosecond x-ray laser pulses. Consistent with our predictions, we observe a LLPT occurring on a time scale < 100 ns and widely separated from ice formation, which begins at times >1 µs.

15.
Nano Lett ; 22(11): 4294-4300, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35612522

RESUMO

Optical excitation leads to ultrafast stress generation in the prototypical multiferroic BiFeO3. The time scales of stress generation are set by the dynamics of the population of excited electronic states and the coupling of the electronic configuration to the structure. X-ray free-electron laser diffraction reveals high-wavevector subpicosecond-time scale stress generation following ultraviolet excitation of a BiFeO3 thin film. Stress generation includes a fast component with a 1/e rise time with an upper limit of 300 fs and longer-rise time components extending to 1.5 ps. The contributions of the fast and delayed components vary as a function of optical fluence, with a reduced a fast-component contribution at high fluence. The results provide insight into stress-generation mechanisms linked to the population of excited electrons and point to new directions in the application of nanoscale multiferroics and related ferroic complex oxides. The fast component of the stress indicates that structural parameters and properties of ferroelectric thin film materials can be optically modulated with 3 dB bandwidths of at least 0.5 THz.

16.
J Phys Chem B ; 126(11): 2299-2307, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35275642

RESUMO

Using time-resolved wide-angle X-ray scattering, we investigated the early stages (10 µs-1 ms) of crystallization of supercooled water, obtained by the ultrafast heating of high- and low-density amorphous ice (HDA and LDA) up to a temperature T = 205 K ± 10 K. We have determined that the crystallizing phase is stacking disordered ice (Isd), with a maximum cubicity of χ = 0.6, in agreement with predictions from molecular dynamics simulations at similar temperatures. However, we note that a growing small portion of hexagonal ice (Ih) was also observed, suggesting that within our timeframe, Isd starts annealing into Ih. The onset of crystallization, in both amorphous ice, occurs at a similar temperature, but the observed final crystalline fraction in the LDA sample is considerably lower than that in the HDA sample. We attribute this discrepancy to the thickness difference between the two samples.


Assuntos
Calefação , Gelo , Cristalização , Lasers , Termodinâmica
17.
J Synchrotron Radiat ; 29(Pt 1): 194-201, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34985436

RESUMO

Understanding the ultrafast dynamics of molecules is of fundamental importance. Time-resolved X-ray absorption spectroscopy (TR-XAS) is a powerful spectroscopic technique for unveiling the time-dependent structural and electronic information of molecules that has been widely applied in various fields. Herein, the design and technical achievement of a newly developed experimental apparatus for TR-XAS measurements in the tender X-ray range with X-ray free-electron lasers (XFELs) at the Pohang Accelerator Laboratory XFEL (PAL-XFEL) are described. Femtosecond TR-XAS measurements were conducted at the Ru L3-edge of well known photosensitizer tris(bipyridine)ruthenium(II) chloride ([Ru(bpy)3]2+) in water. The results indicate ultrafast photoinduced electron transfer from the Ru center to the ligand, which demonstrates that the newly designed setup is applicable for monitoring ultrafast reactions in the femtosecond domain.

18.
J Phys Chem Lett ; 12(51): 12165-12172, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-34914396

RESUMO

We employ femtosecond X-ray absorption spectroscopy of [Ru(m-bpy)3]2+ (m-bpy = 6-methyl-2,2'-bipyridine) to elucidate the time evolution of the spin and charge density upon metal-to-ligand charge-transfer (MLCT) excitation. The core-level transitions at the Ru L3-edge reveal a very short MLCT lifetime of 0.9 ps and relaxation to the lowest triplet metal-centered state (3MC) which exhibits a lifetime of about 300 ps. Time-dependent density functional theory relates ligand methylation to a lower ligand field strength that stabilizes the 3MC state. A quarter of the 3MLCT population appears to be trapped which may be attributed to intramolecular vibrational relaxation or further electron transfer to the solvent. Our results demonstrate that small changes in the ligand field allow control of the photophysical properties. Moreover, this study underscores the high information content of femtosecond L-edge spectroscopy as a probe of valence charge density and spin-state in 4d transition metals.

19.
Sci Adv ; 7(52): eabj8552, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34936432

RESUMO

Ultrafast light-matter interactions enable inducing exotic material phases by promoting access to kinetic processes blocked in equilibrium. Despite potential opportunities, actively using nonequilibrium kinetics for material discovery is limited by the poor understanding on intermediate states of driven systems. Here, using single-pulse time-resolved imaging with x-ray free-electron lasers, we found intermediate states of photoexcited bismuth nanoparticles that showed kinetically reversed surface ordering during ultrafast melting. This entropy-lowering reaction was further investigated by molecular dynamics simulations to reveal that observed kinetics were thermodynamically buried in equilibrium, which emphasized the critical role of electron-mediated ultrafast free-energy modification in inducing exotic material phases. This study demonstrated that ultrafast photoexcitations of electrons provide an efficient strategy to induce hidden material phases by overcoming thermodynamic barriers via nonequilibrium reaction pathways.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...