Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nat Genet ; 56(6): 1080-1089, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38684900

RESUMO

Despite linkage to chromosome 16q in 1996, the mutation causing spinocerebellar ataxia type 4 (SCA4), a late-onset sensory and cerebellar ataxia, remained unknown. Here, using long-read single-strand whole-genome sequencing (LR-GS), we identified a heterozygous GGC-repeat expansion in a large Utah pedigree encoding polyglycine (polyG) in zinc finger homeobox protein 3 (ZFHX3), also known as AT-binding transcription factor 1 (ATBF1). We queried 6,495 genome sequencing datasets and identified the repeat expansion in seven additional pedigrees. Ultrarare DNA variants near the repeat expansion indicate a common distant founder event in Sweden. Intranuclear ZFHX3-p62-ubiquitin aggregates were abundant in SCA4 basis pontis neurons. In fibroblasts and induced pluripotent stem cells, the GGC expansion led to increased ZFHX3 protein levels and abnormal autophagy, which were normalized with small interfering RNA-mediated ZFHX3 knockdown in both cell types. Improving autophagy points to a therapeutic avenue for this novel polyG disease. The coding GGC-repeat expansion in an extremely G+C-rich region was not detectable by short-read whole-exome sequencing, which demonstrates the power of LR-GS for variant discovery.


Assuntos
Autofagia , Proteínas de Homeodomínio , Linhagem , Ataxias Espinocerebelares , Expansão das Repetições de Trinucleotídeos , Humanos , Autofagia/genética , Expansão das Repetições de Trinucleotídeos/genética , Proteínas de Homeodomínio/genética , Ataxias Espinocerebelares/genética , Masculino , Feminino , Células-Tronco Pluripotentes Induzidas/metabolismo
2.
Mov Disord ; 39(6): 965-974, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38509638

RESUMO

BACKGROUND: Patient-focused outcomes present a central need for trial-readiness across all ataxias. The Activities of Daily Living part of the Friedreich Ataxia Rating Scale (FARS-ADL) captures functional impairment and longitudinal change but is only validated in Friedreich Ataxia. OBJECTIVE: Validation of FARS-ADL regarding disease severity and patient-meaningful impairment, and its sensitivity to change across genetic ataxias. METHODS: Real-world registry data of FARS-ADL in 298 ataxia patients across genotypes were analyzed, including (1) cross-correlation with FARS-stage, Scale for the Assessment and Rating of Ataxia (SARA), Patient-Reported Outcome Measure (PROM)-ataxia, and European Quality of Life 5 Dimensions visual analogue scale (EQ5D-VAS); (2) sensitivity to change within a trial-relevant 1-year median follow-up, anchored in Patient Global Impression of Change (PGI-C); and (3) general linear modeling of factors age, sex, and depression (nine-item Patient Health Questionnaire [PHQ-9]). RESULTS: FARS-ADL correlated with overall disability (rhoFARS-stage = 0.79), clinical disease severity (rhoSARA = 0.80), and patient-reported impairment (rhoPROM-ataxia = 0.69, rhoEQ5D-VAS = -0.37), indicating comprehensive construct validity. Also at item level, and validated within genotype (SCA3, RFC1), FARS-ADL correlated with the corresponding SARA effector domains; and all items correlated to EQ5D-VAS quality of life. FARS-ADL was sensitive to change at a 1-year interval, progressing only in patients with worsening PGI-C. Minimal important change was 1.1. points based on intraindividual variability in patients with stable PGI-C. Depression was captured using FARS-ADL (+0.3 points/PHQ-9 count) and EQ5D-VAS, but not FARS-stage or SARA. CONCLUSION: FARS-ADL reflects both disease severity and patient-meaningful impairment across genetic ataxias, with sensitivity to change in trial-relevant timescales in patients perceiving change. It thus presents a promising patient-focused outcome for upcoming ataxia trials. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Atividades Cotidianas , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Qualidade de Vida , Medidas de Resultados Relatados pelo Paciente , Ataxia/fisiopatologia , Ataxia/diagnóstico , Ataxia de Friedreich/fisiopatologia , Ataxia de Friedreich/diagnóstico , Ataxia de Friedreich/genética , Reprodutibilidade dos Testes , Idoso , Sistema de Registros , Adulto Jovem , Diferença Mínima Clinicamente Importante
3.
J Neuroinflammation ; 18(1): 89, 2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33832507

RESUMO

BACKGROUND: Immune-mediated neuropathies, such as chronic inflammatory demyelinating polyneuropathy (CIDP) are treatable neuropathies. Among individuals with diabetic neuropathy, it remains a challenge to identify those individuals who develop CIDP. Corneal confocal microscopy (CCM) has been shown to detect corneal nerve fiber loss and cellular infiltrates in the sub-basal layer of the cornea. The objective of the study was to determine whether CCM can distinguish diabetic neuropathy from CIDP and whether CCM can detect CIDP in persons with coexisting diabetes. METHODS: In this multicenter, case-control study, participants with CIDP (n = 55) with (n = 10) and without (n = 45) diabetes; participants with diabetes (n = 58) with (n = 28) and without (n = 30) diabetic neuropathy, and healthy controls (n = 58) underwent CCM. Corneal nerve fiber density (CNFD), corneal nerve fiber length (CNFL), corneal nerve branch density (CNBD), and dendritic and non-dendritic cell density, with or without nerve fiber contact were quantified. RESULTS: Dendritic cell density in proximity to corneal nerve fibers was significantly higher in participants with CIDP with and without diabetes compared to participants with diabetic neuropathy and controls. CNFD, CNFL, and CNBD were equally reduced in participants with CIDP, diabetic neuropathy, and CIDP with diabetes. CONCLUSIONS: An increase in dendritic cell density identifies persons with CIDP. CCM may, therefore, be useful to differentiate inflammatory from non-inflammatory diabetic neuropathy.


Assuntos
Córnea/patologia , Dendritos/patologia , Diabetes Mellitus Tipo 2/diagnóstico , Neuropatias Diabéticas/diagnóstico , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/diagnóstico , Adulto , Idoso , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/epidemiologia , Neuropatias Diabéticas/epidemiologia , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Microscopia Confocal/métodos , Microscopia Confocal/normas , Pessoa de Meia-Idade , Fibras Nervosas/patologia , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/epidemiologia
4.
Stem Cell Res ; 33: 79-82, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30321832

RESUMO

The human iPS cell line VUZUZLi001-A (hVH-1) was generated from human foreskin fibroblasts to be used as a control line. Reprogramming was performed by retroviral transduction of reprogramming factors OCT4, SOX2, KLF4 and c-MYC. Resource table.


Assuntos
Fibroblastos/metabolismo , Prepúcio do Pênis/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...