Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Vaccines (Basel) ; 12(7)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39066401

RESUMO

We aimed to use the digital platform maintained by the local health service providers in Southeast Sweden for integrated monitoring of disparities in vaccination and morbidity during the COVID-19 pandemic. The monitoring was performed in the adult population of two counties (n = 657,926) between 1 February 2020 and 15 February 2022. The disparities monitored were relocated (internationally displaced), substance users, and suffering from a psychotic disorder. The outcomes monitored were COVID-19 vaccination, SARS-CoV-2 test results, and hospitalization with COVID-19. Relocated residents displayed an increased likelihood of remaining unvaccinated and a decreased likelihood of testing as well as increased risks of primary SARS-CoV-2 infection and hospitalization compared with the general population. Suffering from a major psychiatric disease was associated with an increased risk of remaining unvaccinated and an increased risk of hospitalization but a decreased risk of SARS-CoV-2 infection. From the digital monitoring, we concluded that the relocated minority received insufficient protection during the pandemic, suggesting the necessity for comprehensive promotion of overall social integration. Persons with major psychiatric diseases underused vaccination, while they benefitted from proactively provided testing, implying a need for active encouragement of vaccination. Further research is warranted on legal and ethical frameworks for digital monitoring in vaccination programs.

2.
Inorg Chem ; 63(23): 10490-10499, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38801717

RESUMO

Al4SiC4 is a ternary wide-band-gap semiconductor with a high strength-to-weight ratio and excellent oxidation resistance. It consists of slabs of Al4C3 separated by SiC layers with the space group of P63mc. The space group allows Si to occupy two different 2a Wykoff sites, with previous studies reporting that Si occupies only one of the two sites, giving it an ordered structure. Another hitherto unexplored possibility is that Si can be randomly distributed on both 2a sites. In this work, we revisit the published ordered crystal structure using experimental methods and density functional theory (DFT). Al4SiC4 was synthesized by high-temperature sintering at 1800 °C from a powder mixture of Al4C3 and SiC. Neutron diffraction confirmed that Al4SiC4 crystallized with the space group of P63mc, with diffraction patterns that could be fitted to both the ordered and the disordered structures. Scanning transmission electron microscopy, however, provided clear evidence supporting the latter, with DFT calculations further confirming that it is 0.16 eV lower in energy per Al4SiC4 formula unit than the former. TEM analysis revealed Al vacancies in some of the atomic layers that can introduce p-type doping and direct band gaps of 0.7 and 1.2 eV, agreeing with our optical measurements. Finally, we propose that although the calculated formation energy of the Al vacancies is high, the vacancies are stabilized by entropy effects at the high synthesis temperature. This indicates that the cooling procedure after high-temperature synthesis can be important in determining the vacancy content and the electronic properties of Al4SiC4.

3.
J Clin Med ; 13(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38792303

RESUMO

Background: Data on the incidence and comorbidity of Lichen sclerosus (LS), based on validated nationwide population-based registries, remains scarce. Objective: To explore the incidence and association of comorbidities with LS in Sweden, emphasizing its potential links to malignancies and autoimmune disorders. Methods: A population-based retrospective open cohort study was conducted using the National Patient Register to identify all individuals diagnosed with LS (ICD-10 code L90.0) from 1 January 2001 to 1 January 2021. The study included 154,424 LS patients and a sex and age matched control group of 463,273 individuals to assess the incidence and odds ratios for various cancers and premalignant conditions. Results: The incidence of LS in Sweden was 80.9 per 100,000 person per year, with higher incidence in females (114.4) than in males (47.2). LS patients showed an increased odds ratio for vulvar cancer (OR = 8.3; 95% CI = 7.5-9.0), penile cancer (OR = 8.9; 95% CI = 7.3-11.0), prostate cancer (OR = 1.2; 95% CI = 1.1-1.2), testicular cancer (OR = 1.4; 95% CI = 1.1-1.7), bladder cancer (OR = 1.1; 95% CI = 1.1-1.2), breast cancer (OR = 1.4; 95% CI = 1.3-1.4), leukoplakia of the vulva (OR = 253.5; 95% CI = 221.9-289.6), and leukoplakia of the penis (OR = 5.1; 95% CI = 4.9-5.4). Conclusions: This study underscores the significantly increased association of various cancers and premalignant conditions in LS patients, highlighting the critical need for efficacious treatment and diligent follow-up. The association between LS and autoimmune diseases further necessitates comprehensive investigation to understand the underlying mechanisms and clinical management implications. Future research is essential to confirm these findings and elucidate the role of LS in cancer development.

4.
Nano Lett ; 24(18): 5562-5569, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38682815

RESUMO

Transition metal trichalcogenides (TMTCs) offer remarkable opportunities for tuning electronic states through modifications in chemical composition, temperature, and pressure. Despite considerable interest in TMTCs, there remain significant knowledge gaps concerning the evolution of their electronic properties under compression. In this study, we employ experimental and theoretical approaches to comprehensively explore the high-pressure behavior of the electronic properties of TiS3, a quasi-one-dimensional (Q1D) semiconductor, across various temperature ranges. Through high-pressure electrical resistance and magnetic measurements at elevated pressures, we uncover a distinctive sequence of phase transitions within TiS3, encompassing a transformation from an insulating state at ambient pressure to the emergence of an incipient superconducting state above 70 GPa. Our findings provide compelling evidence that superconductivity at low temperatures of ∼2.9 K is a fundamental characteristic of TiS3, shedding new light on the intriguing high-pressure electronic properties of TiS3 and underscoring the broader implications of our discoveries for TMTCs in general.

5.
Nat Commun ; 15(1): 2193, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467623

RESUMO

Additive nanotechnology enable curvilinear and three-dimensional (3D) magnetic architectures with tunable topology and functionalities surpassing their planar counterparts. Here, we experimentally reveal that 3D soft magnetic wireframe structures resemble compact manifolds and accommodate magnetic textures of high order vorticity determined by the Euler characteristic, χ. We demonstrate that self-standing magnetic tetrapods (homeomorphic to a sphere; χ = + 2) support six surface topological solitons, namely four vortices and two antivortices, with a total vorticity of + 2 equal to its Euler characteristic. Alternatively, wireframe structures with one loop (homeomorphic to a torus; χ = 0) possess equal number of vortices and antivortices, which is relevant for spin-wave splitters and 3D magnonics. Subsequent introduction of n holes into the wireframe geometry (homeomorphic to an n-torus; χ < 0) enables the accommodation of a virtually unlimited number of antivortices, which suggests their usefulness for non-conventional (e.g., reservoir) computation. Furthermore, complex stray-field topologies around these objects are of interest for superconducting electronics, particle trapping and biomedical applications.

7.
Nature ; 625(7995): 483-488, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38233620

RESUMO

Heavy-fermion metals are prototype systems for observing emergent quantum phases driven by electronic interactions1-6. A long-standing aspiration is the dimensional reduction of these materials to exert control over their quantum phases7-11, which remains a significant challenge because traditional intermetallic heavy-fermion compounds have three-dimensional atomic and electronic structures. Here we report comprehensive thermodynamic and spectroscopic evidence of an antiferromagnetically ordered heavy-fermion ground state in CeSiI, an intermetallic comprising two-dimensional (2D) metallic sheets held together by weak interlayer van der Waals (vdW) interactions. Owing to its vdW nature, CeSiI has a quasi-2D electronic structure, and we can control its physical dimension through exfoliation. The emergence of coherent hybridization of f and conduction electrons at low temperature is supported by the temperature evolution of angle-resolved photoemission and scanning tunnelling spectra near the Fermi level and by heat capacity measurements. Electrical transport measurements on few-layer flakes reveal heavy-fermion behaviour and magnetic order down to the ultra-thin regime. Our work establishes CeSiI and related materials as a unique platform for studying dimensionally confined heavy fermions in bulk crystals and employing 2D device fabrication techniques and vdW heterostructures12 to manipulate the interplay between Kondo screening, magnetic order and proximity effects.

8.
Drug Deliv Transl Res ; 14(4): 970-983, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37824040

RESUMO

Novel tumor-on-a-chip approaches are increasingly used to investigate tumor progression and potential treatment options. To improve the effect of any cancer treatment it is important to have an in depth understanding of drug diffusion, penetration through the tumor extracellular matrix and cellular uptake. In this study, we have developed a miniaturized chip where drug diffusion and cellular uptake in different hydrogel environments can be quantified at high resolution using live imaging. Diffusion of doxorubicin was reduced in a biomimetic hydrogel mimicking tissue properties of cirrhotic liver and early stage hepatocellular carcinoma (373 ± 108 µm2/s) as compared to an agarose gel (501 ± 77 µm2/s, p = 0.019). The diffusion was further lowered to 256 ± 30 µm2/s (p = 0.028) by preparing the biomimetic gel in cell media instead of phosphate buffered saline. The addition of liver tumor cells (Huh7 or HepG2) to the gel, at two different densities, did not significantly influence drug diffusion. Clinically relevant and quantifiable doxorubicin concentration gradients (1-20 µM) were established in the chip within one hour. Intracellular increases in doxorubicin fluorescence correlated with decreasing fluorescence of the DNA-binding stain Hoechst 33342 and based on the quantified intracellular uptake of doxorubicin an apparent cell permeability (9.00 ± 0.74 × 10-4 µm/s for HepG2) was determined. Finally, the data derived from the in vitro model were applied to a spatio-temporal tissue concentration model to evaluate the potential clinical impact of a cirrhotic extracellular matrix on doxorubicin diffusion and tumor cell uptake.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Biomimética , Doxorrubicina , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/tratamento farmacológico , Cirrose Hepática , Hidrogéis/uso terapêutico
9.
Sci Adv ; 9(45): eadi1428, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37948525

RESUMO

The direct manipulation of spins via light may provide a path toward ultrafast energy-efficient devices. However, distinguishing the microscopic processes that can occur during ultrafast laser excitation in magnetic alloys is challenging. Here, we study the Heusler compound Co2MnGa, a material that exhibits very strong light-induced spin transfers across the entire M-edge. By combining the element specificity of extreme ultraviolet high-harmonic probes with time-dependent density functional theory, we disentangle the competition between three ultrafast light-induced processes that occur in Co2MnGa: same-site Co-Co spin transfer, intersite Co-Mn spin transfer, and ultrafast spin flips mediated by spin-orbit coupling. By measuring the dynamic magnetic asymmetry across the entire M-edges of the two magnetic sublattices involved, we uncover the relative dominance of these processes at different probe energy regions and times during the laser pulse. Our combined approach enables a comprehensive microscopic interpretation of laser-induced magnetization dynamics on time scales shorter than 100 femtoseconds.

10.
Phys Rev Lett ; 131(19): 196702, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38000423

RESUMO

The V-based kagome systems AV_{3}Sb_{5} (A=Cs, Rb, and K) are unique by virtue of the intricate interplay of nontrivial electronic structure, topology, and intriguing fermiology, rendering them to be a playground of many mutually dependent exotic phases like charge-order and superconductivity. Despite numerous recent studies, the interconnection of magnetism and other complex collective phenomena in these systems has yet not arrived at any conclusion. Using first-principles tools, we demonstrate that their electronic structures, complex fermiologies and phonon dispersions are strongly influenced by the interplay of dynamic electron correlations, nontrivial spin-polarization and spin-orbit coupling. An investigation of the first-principles-derived intersite magnetic exchanges with the complementary analysis of q dependence of the electronic response functions and the electron-phonon coupling indicate that the system conforms as a frustrated spin cluster, where the occurrence of the charge-order phase is intimately related to the mechanism of electron-phonon coupling, rather than the Fermi-surface nesting.

11.
Nano Lett ; 23(22): 10282-10289, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37906179

RESUMO

Quasiparticles consisting of correlated electron(s) and hole(s), such as excitons and trions, play important roles in the optical phenomena of van der Waals semiconductors and serve as unique platforms for studies of many-body physics. Herein, we report a gate-tunable exciton-to-trion transition in pressurized monolayer MoSe2, in which the electronic band structures are modulated continuously within a diamond anvil cell. The emission energies of both the exciton and trion undergo large blueshifts over 90 meV with increasing pressure. Surprisingly, the trion binding energy remains constant at 30 meV, regardless of the applied pressure. Combining ab initio density functional theory calculations and quantum Monte Carlo simulations, we find that the remarkable robustness of the trion binding energy originates from the spatially diffused nature of the trion wave function and the weak correlation between its constituent electron-hole pairs. Our findings shed light on the optical properties of correlated excitonic quasiparticles in low-dimensional materials.

13.
Nanoscale ; 15(21): 9551-9559, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37190857

RESUMO

The chemical bonding at the interface between compound semiconductors and metals is central in determining electronic and optical properties. In this study, new opportunities for controlling this are presented for nanostructures. We investigate Bi adsorption on 2D wurtzite InAs (112̄0) nanosheets and find that temperature-controlled Bi incorporation in either anionic- or cationic-like bonding is possible in the easily accesible range between room temperature and 400 °C. This separation could not be achieved for ordinary zinc blende InAs(110) surfaces. As the crystal structures of the two surfaces have identical nearest neighbour configurations, this indicates that overall geometric differences can significantly alter the adsorption and incorporation. Ab initio theoretical modelling confirms observed adsorption results, but indicate that both the formation energies as well as kinetic barriers contributes to the observed temperature dependent behaviour. Further, we find that the Bi adsorption rate can differ by at least 2.5 times between the two InAs surfaces while being negligible for standard Si substrates under similar deposition conditions. This, in combination with the observed interface control, provides an excellent opportunity for tuneable Bi integration on 2D InAs nanostructures on standard Si substrates.

14.
Materials (Basel) ; 16(7)2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37048917

RESUMO

High-temperature body-centered cubic (BCC) γ-U is effectively stablized by γ-(U,Zr) alloys that also make it feasible to use it as a nuclear fuel. However, relatively little research has focused on γ-(U,Zr) alloys due to their instability at room temperature. The effect of Zr composition on its mechanical properties is not clear yet. Herein, we perform molecular dynamics simulations to investigate the mechanical and dynamical stabilities of γ-(U,Zr) alloys under high temperatures, and we calculate the corresponding lattice constants, various elastic moduli, Vickers hardness, Debye temperature, and dynamical structure factor. The results showed that γ-U, ß-Zr, and γ-(U,Zr) are all mechanically and dynamically stable at 1200 K, which is in good agreement with the previously reported high-temperature phase diagram of U-Zr alloys. We found that the alloying treatment on γ-U with Zr can effectively improve its mechanical strength and melting points, such as Vickers hardness and Debye temperature, making it more suitable for nuclear reactors. Furthermore, the Zr concentrations in γ-(U,Zr) alloys have an excellent effect on these properties. In addition, the dynamical structure factor reveals that γ-U shows different structural features after alloying with Zr. The present simulation data and insights could be significant for understanding the structures and properties of UZr alloy under high temperatures.

15.
Cryst Growth Des ; 23(4): 2287-2294, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37038405

RESUMO

Transition metal dichalcogenides (TMDs) are an emergent class of low-dimensional materials with growing applications in the field of nanoelectronics. However, efficient methods for synthesizing large monocrystals of these systems are still lacking. Here, we describe an efficient synthetic route for a large number of TMDs that were obtained in quartz glass ampoules by sulfuric vapor transport and liquid sulfur. Unlike the sublimation technique, the metal enters the gas phase in the form of molecules, hence containing a greater amount of sulfur than the growing crystal. We have investigated the physical properties for a selection of these crystals and compared them to state-of-the-art findings reported in the literature. The acquired electronic properties features demonstrate the overall high quality of single crystals grown in this work as exemplified by CoS2, ReS2, NbS2, and TaS2. This new approach to synthesize high-quality TMD single crystals can alleviate many material quality concerns and is suitable for emerging electronic devices.

16.
ACS Nano ; 17(5): 5047-5058, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36821844

RESUMO

Two-dimensional (2D) topological insulators have fascinating physical properties which are promising for applications within spintronics. In order to realize spintronic devices working at room temperature, materials with a large nontrivial gap are needed. Bismuthene, a 2D layer of Bi atoms in a honeycomb structure, has recently attracted strong attention because of its record-large nontrivial gap, which is due to the strong spin-orbit coupling of Bi and the unusually strong interaction of the Bi atoms with the surface atoms of the substrate underneath. It would be a significant step forward to be able to form 2D materials with properties such as bismuthene on semiconductors such as GaAs, which has a band gap size relevant for electronics and a direct band gap for optical applications. Here, we present the successful formation of a 2D Bi honeycomb structure on GaAs, which fulfills these conditions. Bi atoms have been incorporated into a clean GaAs(111) surface, with As termination, based on Bi deposition under optimized growth conditions. Low-temperature scanning tunneling microscopy and spectroscopy (LT-STM/S) demonstrates a well-ordered large-scale honeycomb structure, consisting of Bi atoms in a √3 × âˆš3 30° reconstruction on GaAs(111). X-ray photoelectron spectroscopy shows that the Bi atoms of the honeycomb structure only bond to the underlying As atoms. This is supported by calculations based on density functional theory that confirm the honeycomb structure with a large Bi-As binding energy and predict Bi-induced electronic bands within the GaAs band gap that open up a gap of nontrivial topological nature. STS results support the existence of Bi-induced states within the GaAs band gap. The GaAs:Bi honeycomb layer found here has a similar structure as previously published bismuthene on SiC or on Ag, though with a significantly larger lattice constant and only weak Bi-Bi bonding. It can therefore be considered as an extreme case of bismuthene, which is fundamentally interesting. Furthermore, it has the same exciting electronic properties, opening a large nontrivial gap, which is the requirement for room-temperature spintronic applications, and it is directly integrated in GaAs, a direct band gap semiconductor with a large range of (opto)electronic devices.

17.
ACS Appl Mater Interfaces ; 14(45): 51449-51458, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36321542

RESUMO

We highlight the enhanced electronic and optical functionalization in the hybrid heterojunction of one-dimensional (1D) tellurene with a two-dimensional (2D) monolayer of graphene and MoS2 in both lateral and vertical geometries. The structural configurations of these assemblies are optimized with a comparative analysis of the energetics for different positional placements of the 1D system with respect to the hexagonal 2D substrate. The 1D/2D coupling of the electronic structure in this unique assembly enables the realization of the three different types of heterojunctions, viz. type I, type II, and Z-scheme. The interaction with 1D tellurene enables the opening of a band gap of the order of hundreds of meV in 2D graphene for both lateral and vertical geometries. With both static and time-dependent first-principles analysis, we indicate their potential applications in broadband photodetection and absorption, covering a wide range of visible to infrared (near-IR to mid-IR) spectrum from 380 to 10 000 nm. We indicate that this 1D/2D assembly also has bright prospects in green-energy harvesting.

18.
Inorg Chem ; 61(44): 17673-17681, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36270053

RESUMO

The atomic and magnetic structures of Mn(Co,Ge)2 are reported herein. The system crystallizes in the space group P63/mmc as a superstructure of the MgZn2-type structure. The system exhibits two magnetic transitions with associated magnetic structures, a ferromagnetic (FM) structure around room temperature, and an incommensurate structure at lower temperatures. The FM structure, occurring between 193 and 329 K, is found to be a member of the magnetic space group P63/mm'c'. The incommensurate structure found below 193 K is helical with propagation vector k = (0 0 0.0483). Crystallographic results are corroborated by magnetic measurements and ab initio calculations.

19.
ACS Appl Mater Interfaces ; 14(31): 36209-36216, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35867345

RESUMO

Adherence of metal oxides to graphene is of fundamental significance to graphene nanoelectronic and spintronic interfaces. Titanium oxide and aluminum oxide are two widely used tunnel barriers in such devices, which offer optimum interface resistance and distinct interface conditions that govern transport parameters and device performance. Here, we reveal a fundamental difference in how these metal oxides interface with graphene through electrical transport measurements and Raman and photoelectron spectroscopies, combined with ab initio electronic structure calculations of such interfaces. While both oxide layers cause surface charge transfer induced p-type doping in graphene, in sharp contrast to TiOx, the AlOx/graphene interface shows the presence of appreciable sp3 defects. Electronic structure calculations disclose that significant p-type doping occurs due to a combination of sp3 bonds formed between C and O atoms at the interface and possible slightly off-stoichiometric defects of the aluminum oxide layer. Furthermore, the sp3 hybridization at the AlOx/graphene interface leads to distinct magnetic moments of unsaturated bonds, which not only explicates the widely observed low spin-lifetimes in AlOx barrier graphene spintronic devices but also suggests possibilities for new hybrid resistive switching and spin valves.

20.
Faraday Discuss ; 237(0): 300-316, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35670419

RESUMO

Wide-band-gap insulators such as NiO offer the exciting prospect of coherently manipulating electronic correlations with strong optical fields. Contrary to metals where rapid dephasing of optical excitation via electronic processes occurs, the sub-gap excitation in charge-transfer insulators has been shown to couple to low-energy bosonic excitations. However, it is currently unknown if the bosonic dressing field is composed of phonons or magnons. Here we use the prototypical charge-transfer insulator NiO to demonstrate that 1.5 eV sub-gap optical excitation leads to a renormalised NiO band-gap in combination with a significant reduction of the antiferromagnetic order. We employ element-specific X-ray reflectivity at the FLASH free-electron laser to demonstrate the reduction of the upper band-edge at the O 1s-2p core-valence resonance (K-edge) whereas the antiferromagnetic order is probed via X-ray magnetic linear dichroism (XMLD) at the Ni 2p-3d resonance (L2-edge). Comparing the transient XMLD spectral line shape to ground-state measurements allows us to extract a spin temperature rise of 65 ± 5 K for time delays longer than 400 fs while at earlier times a non-equilibrium spin state is formed. We identify transient mid-gap states being formed during the first 200 fs accompanied by a band-gap reduction lasting at least up to the maximum measured time delay of 2.4 ps. Electronic structure calculations indicate that magnon excitations significantly contribute to the reduction of the NiO band gap.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...