Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 258
Filtrar
1.
Environ Int ; 189: 108728, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850672

RESUMO

Bisphenol A alternatives are manufactured as potentially less harmful substitutes of bisphenol A (BPA) that offer similar functionality. These alternatives are already in the market, entering the environment and thus raising ecological concerns. However, it can be expected that levels of BPA alternatives will dominate in the future, they are limited information on their environmental safety. The EU PARC project highlights BPA alternatives as priority chemicals and consolidates information on BPA alternatives, with a focus on environmental relevance and on the identification of the research gaps. The review highlighted aspects and future perspectives. In brief, an extension of environmental monitoring is crucial, extending it to cover BPA alternatives to track their levels and facilitate the timely implementation of mitigation measures. The biological activity has been studied for BPA alternatives, but in a non-systematic way and prioritized a limited number of chemicals. For several BPA alternatives, the data has already provided substantial evidence regarding their potential harm to the environment. We stress the importance of conducting more comprehensive assessments that go beyond the traditional reproductive studies and focus on overlooked relevant endpoints. Future research should also consider mixture effects, realistic environmental concentrations, and the long-term consequences on biota and ecosystems.


Assuntos
Compostos Benzidrílicos , Monitoramento Ambiental , Poluentes Ambientais , Fenóis , Fenóis/toxicidade , Compostos Benzidrílicos/toxicidade , Poluentes Ambientais/toxicidade , Monitoramento Ambiental/métodos , Animais , Humanos , Disruptores Endócrinos/toxicidade
2.
Chem Res Toxicol ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900731

RESUMO

Chemicals often require metabolic activation to become genotoxic. Established test guidelines recommend the use of the rat liver S9 fraction or microsomes to introduce metabolic competence to in vitro cell-based bioassays, but the use of animal-derived components in cell culture raises ethical concerns and may lead to quality issues and reproducibility problems. The aim of the present study was to compare the metabolic activation of cyclophosphamide (CPA) and benzo[a]pyrene (BaP) by induced rat liver microsomes and an abiotic cytochrome P450 (CYP) enzyme based on a biomimetic porphyrine catalyst. For the detection of genotoxic effects, the chemicals were tested in a reporter gene assay targeting the activation of the cellular tumor protein p53. Both chemicals were metabolized by the abiotic CYP enzyme and the microsomes. CPA showed no activation of p53 and low cytotoxicity without metabolic activation, but strong activation of p53 and increased cytotoxicity upon incubation with liver microsomes or abiotic CYP enzyme. The effect concentration causing a 1.5-fold induction of p53 activation was very similar with both metabolization systems (within a factor of 1.5), indicating that genotoxic metabolites were formed at comparable concentrations. BaP also showed low cytotoxicity and no p53 activation without metabolic activation. The activation of p53 was detected for BaP upon incubation with active and inactive microsomes at similar concentrations, indicating experimental artifacts caused by the microsomes or NADPH. The activation of BaP with the abiotic CYP enzyme increased the cytotoxicity of BaP by a factor of 8, but no activation of p53 was detected. The results indicate that abiotic CYP enzymes may present an alternative to rat liver S9 fraction or microsomes for the metabolic activation of test chemicals, which are completely free of animal-derived components. However, an amendment of existing test guidelines would require testing of more chemicals and genotoxicity end points.

3.
J Econ Entomol ; 117(3): 982-992, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38691062

RESUMO

Insecticides prevent or reduce insect crop damage, maintaining crop quality and quantity. Physiological traits, such as an insect's feeding behavior, influence the way insecticides are absorbed and processed in the body (toxicokinetics), which can be exploited to improve species selectivity. To fully understand the uptake of insecticides, it is essential to study their total uptake and toxicokinetics independent of their toxic effects on insects. We studied the toxicokinetics (TK) of insecticidally inactive test compounds incorporating agro-like structural motifs in larvae of the Egyptian cotton leafworm (Spodoptera littoralis, Lepidoptera), and their distribution across all biological matrices, using laboratory experiments and modeling. We measured Spodoptera larval behavior and temporal changes of whole-body concentrations of test compounds during feeding on treated soybean leaf disks and throughout a subsequent depuration period. Differences in the distribution of the total quantities of compounds were found between the biological matrices leaf, larva, and feces. Rate constants for uptake and elimination of test compounds were derived by calibrating a toxicokinetic model to the whole-body concentrations. Uptake and elimination rate constants depended on the physicochemical properties of the test compounds. Increasing hydrophobicity increased the bioaccumulation potential of test compounds. Incomplete quantities in larval matrices indicated that some compounds may undergo biotransformation. As fecal excretion was a major elimination pathway, the variable time of release and number of feces pellets led to a high variability in the body burden. We provide quantitative models to predict the toxicokinetics and bioaccumulation potential of inactive insecticide analogs (parent compounds) in Spodoptera.


Assuntos
Inseticidas , Larva , Spodoptera , Toxicocinética , Animais , Spodoptera/efeitos dos fármacos , Inseticidas/farmacocinética , Larva/crescimento & desenvolvimento , Modelos Biológicos , Comportamento Alimentar , Glycine max
4.
Environ Sci Technol ; 58(23): 9954-9966, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38804966

RESUMO

Per- and polyfluoroalkyl substances (PFAS) strongly bind to proteins and lipids in blood, which govern their accumulation and distribution in organisms. Understanding the plasma binding mechanism and species differences will facilitate the quantitative in vitro-to-in vivo extrapolation and improve risk assessment of PFAS. We studied the binding mechanism of 16 PFAS to bovine serum albumin (BSA), trout, and human plasma using solid-phase microextraction. Binding of anionic PFAS to BSA and human plasma was found to be highly concentration-dependent, while trout plasma binding was linear for the majority of the tested PFAS. At a molar ratio of PFAS to protein ν < 0.1 molPFAS/molprotein, the specific protein binding of anionic PFAS dominated their human plasma binding. This would be the scenario for physiological conditions (ν < 0.01), whereas in in vitro assays, PFAS are often dosed in excess (ν > 1) and nonspecific binding becomes dominant. BSA was shown to serve as a good surrogate for human plasma. As trout plasma contains more lipids, the nonspecific binding to lipids affected the affinities of PFAS for trout plasma. Mass balance models that are parameterized with the protein-water and lipid-water partitioning constants (chemical characteristics), as well as the protein and lipid contents of the plasma (species characteristics), were successfully used to predict the binding to human and trout plasma.


Assuntos
Proteínas Sanguíneas , Fluorocarbonos , Ligação Proteica , Especificidade da Espécie , Truta , Animais , Humanos , Fluorocarbonos/metabolismo , Fluorocarbonos/sangue , Proteínas Sanguíneas/metabolismo , Bovinos , Truta/metabolismo , Soroalbumina Bovina/metabolismo , Soroalbumina Bovina/química
5.
Environ Sci Technol ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696305

RESUMO

Identifying causative toxicants in mixtures is critical, but this task is challenging when mixtures contain multiple chemical classes. Effect-based methods are used to complement chemical analyses to identify toxicants, yet conventional bioassays typically rely on an apical and/or single endpoint, providing limited diagnostic potential to guide chemical prioritization. We proposed an event-driven taxonomy framework for mixture risk assessment that relied on high-throughput screening bioassays and toxicant identification integrated by deep learning. In this work, the framework was evaluated using chemical mixtures in sediments eliciting aryl-hydrocarbon receptor activation and oxidative stress response. Mixture prediction using target analysis explained <10% of observed sediment bioactivity. To identify additional contaminants, two deep learning models were developed to predict fingerprints of a pool of bioactive substances (event driver fingerprint, EDFP) and convert these candidates to MS-readable information (event driver ion, EDION) for nontarget analysis. Two libraries with 121 and 118 fingerprints were established, and 247 bioactive compounds were identified at confidence level 2 or 3 in sediment extract using GC-qToF-MS. Among them, 12 toxicants were analytically confirmed using reference standards. Collectively, we present a "bioactivity-signature-toxicant" strategy to deconvolute mixtures and to connect patchy data sets and guide nontarget analysis for diverse chemicals that elicit the same bioactivity.

6.
Front Toxicol ; 6: 1359507, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38742231

RESUMO

In the European regulatory context, rodent in vivo studies are the predominant source of neurotoxicity information. Although they form a cornerstone of neurotoxicological assessments, they are costly and the topic of ethical debate. While the public expects chemicals and products to be safe for the developing and mature nervous systems, considerable numbers of chemicals in commerce have not, or only to a limited extent, been assessed for their potential to cause neurotoxicity. As such, there is a societal push toward the replacement of animal models with in vitro or alternative methods. New approach methods (NAMs) can contribute to the regulatory knowledge base, increase chemical safety, and modernize chemical hazard and risk assessment. Provided they reach an acceptable level of regulatory relevance and reliability, NAMs may be considered as replacements for specific in vivo studies. The European Partnership for the Assessment of Risks from Chemicals (PARC) addresses challenges to the development and implementation of NAMs in chemical risk assessment. In collaboration with regulatory agencies, Project 5.2.1e (Neurotoxicity) aims to develop and evaluate NAMs for developmental neurotoxicity (DNT) and adult neurotoxicity (ANT) and to understand the applicability domain of specific NAMs for the detection of endocrine disruption and epigenetic perturbation. To speed up assay time and reduce costs, we identify early indicators of later-onset effects. Ultimately, we will assemble second-generation developmental neurotoxicity and first-generation adult neurotoxicity test batteries, both of which aim to provide regulatory hazard and risk assessors and industry stakeholders with robust, speedy, lower-cost, and informative next-generation hazard and risk assessment tools.

7.
Chem Res Toxicol ; 37(5): 744-756, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38652132

RESUMO

High-throughput cell-based bioassays are used for chemical screening and risk assessment. Chemical transformation processes caused by abiotic degradation or metabolization can reduce the chemical concentration or, in some cases, lead to the formation of more toxic transformation products. Unaccounted loss processes may falsify the bioassay results. Capturing the formation and effects of transformation products is important for relating the in vitro effects to in vivo. Reporter gene cell lines are believed to have low metabolic activity, but inducibility of cytochrome P450 (CYP) enzymes has been reported. Baseline toxicity is the minimal toxicity a chemical can have and is caused by the incorporation of the chemical into cell membranes. In the present study, we improved an existing baseline toxicity model based on a newly defined critical membrane burden derived from freely dissolved effect concentrations, which are directly related to the membrane concentration. Experimental effect concentrations of 94 chemicals in three bioassays (AREc32, ARE-bla and GR-bla) were compared with baseline toxicity by calculating the toxic ratio (TR). CYP activities of all cell lines were determined by using fluorescence-based assays. Only ARE-bla showed a low basal CYP activity and inducibility and AREc32 showed a low inducibility. Overall cytotoxicity was similar in all three assays despite the different metabolic activities indicating that chemical metabolism is not relevant for the cytotoxicity of the tested chemicals in these assays. Up to 28 chemicals showed specific cytotoxicity with TR > 10 in the bioassays, but baseline toxicity could explain the effects of the majority of the remaining chemicals. Seven chemicals showed TR < 0.1 indicating inaccurate physicochemical properties or experimental artifacts like chemical precipitation, volatilization, degradation, or other loss processes during the in vitro bioassay. The new baseline model can be used not only to identify specific cytotoxicity mechanisms but also to identify potential problems in the experimental performance or evaluation of the bioassay and thus improve the quality of the bioassay data.


Assuntos
Bioensaio , Sistema Enzimático do Citocromo P-450 , Genes Reporter , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Animais , Testes de Toxicidade , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular
8.
Environ Sci Technol ; 58(13): 5716-5726, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38503264

RESUMO

Mitochondria play a key role in the energy production of cells, but their function can be disturbed by environmental toxicants. We developed a cell-based mitochondrial toxicity assay for environmental chemicals and their mixtures extracted from water samples. The reporter gene cell line AREc32, which is frequently used to quantify the cytotoxicity and oxidative stress response of water samples, was multiplexed with an endpoint of mitochondrial toxicity. The disruption of the mitochondrial membrane potential (MMP) was quantified by high-content imaging and compared to measured cytotoxicity, predicted baseline toxicity, and activation of the oxidative stress response. Mitochondrial complex I inhibitors showed highly specific effects on the MMP, with minor effects on cell viability. Uncouplers showed a wide distribution of specificity on the MMP, often accompanied by specific cytotoxicity (enhanced over baseline toxicity). Mitochondrial toxicity and the oxidative stress response were not directly associated. The multiplexed assay was applied to water samples ranging from wastewater treatment plant (WWTP) influent and effluent and surface water to drinking and bottled water from various European countries. Specific effects on MMP were observed for the WWTP influent and effluent. This new MitoOxTox assay is an important complement for existing in vitro test batteries for water quality testing and has potential for applications in human biomonitoring.


Assuntos
Poluentes Químicos da Água , Qualidade da Água , Humanos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Mitocôndrias/química , Estresse Oxidativo , Bioensaio/métodos
9.
Anal Bioanal Chem ; 416(12): 2983-2993, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556595

RESUMO

Liquid chromatography (LC) or gas chromatography (GC) coupled to high-resolution mass spectrometry (HRMS) is a versatile analytical method for the analysis of thousands of chemical pollutants that can be found in environmental and biological samples. While the tools for handling such complex datasets have improved, there are still no fully automated workflows for targeted screening analysis. Here we present an R-based workflow that is able to cope with challenging data like noisy ion chromatograms, retention time shifts, and multiple peak patterns. The workflow can be applied to batches of HRMS data recorded after GC with electron ionization (GC-EI) and LC coupled to electrospray ionization in both negative and positive mode (LC-ESIneg/LC-ESIpos) to perform peak annotation and quantitation fully unsupervised. We used Orbitrap HRMS data of surface water extracts to compare the Automated Target Screening (ATS) workflow with data evaluations performed with the vendor software TraceFinder and the established semi-automated analysis workflow in the MZmine software. The ATS approach increased the overall evaluation performance of the peak annotation compared to the established MZmine module without the need for any post-hoc corrections. The overall accuracy increased from 0.80 to 0.86 (LC-ESIpos), from 0.77 to 0.83 (LC-ESIneg), and from 0.67 to 0.76 (GC-EI). The mean average percentage errors for quantification of ATS were around 30% compared to the manual quantification with TraceFinder. The ATS workflow enables time-efficient analysis of GC- and LC-HRMS data and accelerates and improves the applicability of target screening in studies with a large number of analytes and sample sizes without the need for manual intervention.


Assuntos
Fluxo de Trabalho , Espectrometria de Massas/métodos , Software , Automação , Cromatografia Líquida/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Poluentes Químicos da Água/análise
10.
Environ Sci Technol ; 58(13): 5727-5738, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38394616

RESUMO

High-throughput screening is a strategy to identify potential adverse outcome pathways (AOP) for thousands of per- and polyfluoroalkyl substances (PFAS) if the specific effects can be distinguished from nonspecific effects. We hypothesize that baseline toxicity may serve as a reference to determine the specificity of the cell responses. Baseline toxicity is the minimum (cyto)toxicity caused by the accumulation of chemicals in cell membranes, which disturbs their structure and function. A mass balance model linking the critical membrane concentration for baseline toxicity to nominal (i.e., dosed) concentrations of PFAS in cell-based bioassays yielded separate baseline toxicity prediction models for anionic and neutral PFAS, which were based on liposome-water distribution ratios as the sole model descriptors. The specificity of cell responses to 30 PFAS on six target effects (activation of peroxisome proliferator-activated receptor (PPAR) gamma, aryl hydrocarbon receptor, oxidative stress response, and neurotoxicity in own experiments, and literature data for activation of several PPARs and the estrogen receptor) were assessed by comparing effective concentrations to predicted baseline toxic concentrations. HFPO-DA, HFPO-DA-AS, and PFMOAA showed high specificity on PPARs, which provides information on key events in AOPs relevant to PFAS. However, PFAS were of low specificity in the other experimentally evaluated assays and others from the literature. Even if PFAS are not highly specific for certain defined targets but disturb many toxicity pathways with low potency, such effects are toxicologically relevant, especially for hydrophobic PFAS and because PFAS are highly persistent and cause chronic effects. This implicates a heightened need for the risk assessment of PFAS mixtures because nonspecific effects behave concentration-additive in mixtures.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Receptores Ativados por Proliferador de Peroxissomo , Fluorocarbonos/toxicidade , Propionatos , Bioensaio
11.
Water Res ; 253: 121297, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38354662

RESUMO

One of the primary criteria for a suitable drug biomarker for wastewater-based epidemiology (WBE) is having a unique source representing human metabolism. For WBE studies, this means it is important to identify and monitor metabolites rather than parent drugs, to capture consumption of drugs and not fractions that could be directly disposed. In this study, a high-throughput workflow based on a human liver S9 fraction in vitro metabolism assay was developed to identify human transformation products of new chemicals, using α-pyrrolidino-2-phenylacetophenone (α-D2PV) as a case study. Analysis by liquid chromatography coupled to high resolution mass spectrometry identified four metabolites. Subsequently, a targeted liquid chromatography - tandem mass spectrometry method was developed for their analysis in wastewater samples collected from a music festival in Australia. The successful application of this workflow opens the door for future work to better understand the metabolism of chemicals and their detection and application for wastewater-based epidemiology.


Assuntos
Vigilância Epidemiológica Baseada em Águas Residuárias , Águas Residuárias , Humanos , Espectrometria de Massas , Cromatografia Líquida/métodos , Austrália
12.
J Expo Sci Environ Epidemiol ; 34(1): 126-135, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37328620

RESUMO

BACKGROUND: Location-specific patterns of regulated and non-regulated disinfection byproducts (DBPs) were detected in tap water samples of the Barcelona Metropolitan Area. However, it remains unclear if the detected DBPs together with undetected DPBs and organic micropollutants can lead to mixture effects in drinking water. OBJECTIVE: To evaluate the neurotoxicity, oxidative stress response and cytotoxicity of 42 tap water samples, 6 treated with activated carbon filters, 5 with reverse osmosis and 9 bottled waters. To compare the measured effects of the extracts with the mixture effects predicted from the detected concentrations and the relative effect potencies of the detected DBPs using the mixture model of concentration addition. METHODS: Mixtures of organic chemicals in water samples were enriched by solid phase extraction and tested for cytotoxicity and neurite outgrowth inhibition in the neuronal cell line SH-SY5Y and for cytotoxicity and oxidative stress response in the AREc32 assay. RESULTS: Unenriched water did not trigger neurotoxicity or cytotoxicity. After up to 500-fold enrichment, few extracts showed cytotoxicity. Disinfected water showed low neurotoxicity at 20- to 300-fold enrichment and oxidative stress response at 8- to 140-fold enrichment. Non-regulated non-volatile DBPs, particularly (brominated) haloacetonitriles dominated the predicted mixture effects of the detected chemicals and predicted effects agreed with the measured effects. By hierarchical clustering we identified strong geographical patterns in the types of DPBs and their association with effects. Activated carbon filters did not show a consistent reduction of effects but domestic reverse osmosis filters decreased the effect to that of bottled water. IMPACT STATEMENT: Bioassays are an important complement to chemical analysis of disinfection by-products (DBPs) in drinking water. Comparison of the measured oxidative stress response and mixture effects predicted from the detected chemicals and their relative effect potencies allowed the identification of the forcing agents for the mixture effects, which differed by location but were mainly non-regulated DBPs. This study demonstrates the relevance of non-regulated DBPs from a toxicological perspective. In vitro bioassays, in particular reporter gene assays for oxidative stress response that integrate different reactive toxicity pathways including genotoxicity, may therefore serve as sum parameters for drinking water quality assessment.


Assuntos
Água Potável , Neuroblastoma , Humanos , Carvão Vegetal , Bioensaio , Cromatografia Gasosa
13.
Artigo em Inglês | MEDLINE | ID: mdl-38101287

RESUMO

Biota samples are used to monitor chemical stressors and their impact on the ecosystem and to describe dietary chemical exposure. These complex matrices require an extraction step followed by clean-up to avoid damaging sensitive analytical instruments based on chromatography coupled to mass spectrometry. While interest for non-targeted analysis (NTA) is increasing, there is no versatile or generic sample preparation for a wide range of contaminants suitable for a diversity of biotic matrices. Among the contaminants' variety, persistent contaminants are mostly hydrophobic (mid- to non-polar) and bio-magnify through the lipidic fraction. During their extraction, lipids are generally co-extracted, which may cause matrix effect during the analysis such as hindering the acquired signal. The aim of this study was to evaluate the efficacy of four clean-up methods to selectively remove lipids from extracts prior to NTA. We evaluated (i) gel permeation chromatography (GPC), (ii) Captiva EMR-lipid cartridge (EMR), (iii) sulphuric acid degradation (H2SO4) and (iv) polydimethyl siloxane (PDMS) for their efficiency to remove lipids from hen egg extracts. Gas and liquid chromatography coupled with high-resolution mass spectrometry fitted with either electron ionisation or electrospray ionisation sources operating in positive and negative modes were used to determine the performances of the clean-up methods. A set of 102 chemicals with a wide range of physico-chemical properties that covers the chemical space of mid- to non-polar contaminants, was used to assess and compare recoveries and matrix effects. Matrix effects, that could hinder the mass spectrometer signal, were lower for extracts cleaned-up with H2SO4 than for the ones cleaned-up with PDMS, EMR and GPC. The recoveries were satisfactory for both GPC and EMR while those determined for PDMS and H2SO4 were low due to poor partitioning and degradation/dissociation of the compounds, respectively. The choice of the clean-up methods, among those assessed, should be a compromise that takes into account the matrix under consideration, the levels and the physico-chemical properties of the contaminants.


Assuntos
Expossoma , Espectrometria de Massas em Tandem , Animais , Feminino , Espectrometria de Massas em Tandem/métodos , Galinhas , Ecossistema , Lipídeos/química
14.
Environ Sci Technol ; 57(48): 19363-19373, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37987701

RESUMO

Human biomonitoring studies are important for understanding adverse health outcomes caused by exposure to chemicals. Complex mixtures of chemicals detected in blood - the blood exposome - may serve as proxies for systemic exposure. Ideally, several analytical methods are combined with in vitro bioassays to capture chemical mixtures as diverse as possible. How many and which (bio)analyses can be performed is limited by the sample volume and compatibility of extraction and (bio)analytical methods. We compared the extraction efficacy of three extraction methods using pooled human plasma spiked with >400 organic chemicals. Passive equilibrium sampling (PES) with polydimethylsiloxane (PDMS) followed by solid phase extraction (PES + SPE), SPE alone (SPE), and solvent precipitation (SolvPrec) were compared for chemical recovery in LC-HRMS and GC-HRMS as well as effect recovery in four mammalian cell lines (AhR-CALUX, SH-SY5Y, AREc32, PPARγ-BLA). The mean chemical recoveries were 38% for PES + SPE, 27% for SPE, and 61% for SolvPrec. PES + SPE enhanced the mean chemical recovery compared to SPE, especially for neutral hydrophobic chemicals. PES + SPE and SolvPrec had effect recoveries of 100-200% in all four cell lines, outperforming SPE, which had 30-100% effect recovery. Although SolvPrec has the best chemical recoveries, it does not remove matrix like inorganics or lipids, which might pose problems for some (bio)analytical methods. PES + SPE is the most promising method for sample preparation in human biomonitoring as it combines good recoveries with cleanup, enrichment, and potential for high throughput.


Assuntos
Neuroblastoma , Animais , Humanos , Compostos Orgânicos , Bioensaio/métodos , Extração em Fase Sólida/métodos , Mamíferos
15.
Environ Int ; 179: 108155, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37688808

RESUMO

Aquatic environments are polluted with a multitude of organic micropollutants, which challenges risk assessment due the complexity and diversity of pollutant mixtures. The recognition that certain source-specific background pollution occurs ubiquitously in the aquatic environment might be one way forward to approach mixture risk assessment. To investigate this hypothesis, we prepared one typical and representative WWTP effluent mixture of organic micropollutants (EWERBmix) comprised of 81 compounds selected according to their high frequency of occurrence and toxic potential. Toxicological relevant effects of this reference mixture were measured in eight organism- and cell-based bioassays and compared with predicted mixture effects, which were calculated based on effect data of single chemicals retrieved from literature or different databases, and via quantitative structure-activity relationships (QSARs). The results show that the EWERBmix supports the identification of substances which should be considered in future monitoring efforts. It provides measures to estimate wastewater background concentrations in rivers under consideration of respective dilution factors, and to assess the extent of mixture risks to be expected from European WWTP effluents. The EWERBmix presents a reasonable proxy for regulatory authorities to develop and implement assessment approaches and regulatory measures to address mixture risks. The highlighted data gaps should be considered for prioritization of effect testing of most prevalent and relevant individual organic micropollutants of WWTP effluent background pollution. The here provided approach and EWERBmix are available for authorities and scientists for further investigations. The approach presented can furthermore serve as a roadmap guiding the development of archetypic background mixtures for other sources, geographical settings and chemical compounds, e.g. inorganic pollutants.


Assuntos
Poluentes Ambientais , Bases de Dados Factuais , Poluição Ambiental , Geografia , Relação Quantitativa Estrutura-Atividade
16.
Chem Res Toxicol ; 36(8): 1374-1385, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37531411

RESUMO

Acrylamides are widely used industrial chemicals that cause adverse effects in humans or animals, such as carcinogenicity or neurotoxicity. The excess toxicity of these reactive electrophilic chemicals is especially interesting, as it is mostly triggered by covalent reactions with biological nucleophiles, such as DNA bases, proteins, or peptides. The cytotoxicity and activation of oxidative stress response of 10 (meth)acrylamides measured in three reporter gene cell lines occurred at similar concentrations. Most acrylamides exhibited high excess toxicity, while methacrylamides acted as baseline toxicants. The (meth)acrylamides showed no reactivity toward the hard biological nucleophile 2-deoxyguanosine (2DG) within 24 h, and only acrylamides reacted with the soft nucleophile glutathione (GSH). Second-order degradation rate constants (kGSH) were measured for all acrylamides with N,N'-methylenebis(acrylamide) (NMBA) showing the highest kGSH (134.800 M-1 h-1) and N,N-diethylacrylamide (NDA) the lowest kGSH (2.574 M-1 h-1). Liquid chromatography coupled to high-resolution mass spectrometry was used to confirm the GSH conjugates of the acrylamides with a double conjugate formed for NMBA. The differences in reactivity between acrylamides and methacrylamides could be explained by the charge density of the carbon atoms because the electron-donating inductive effect of the methyl group of the methacrylamides lowered their electrophilicity and thus their reactivity. The differences in reactivity within the group of acrylamides could be explained by the energy of the lowest unoccupied molecular orbital and steric hindrance. Cytotoxicity and activation of oxidative stress response were linearly correlated with the second-order reaction rate constants of the acrylamides with GSH. The reaction of the acrylamides with GSH is hence not only a detoxification mechanism but also leads to disturbances of the redox balance, making the cells more vulnerable to reactive oxygen species. The reactivity of acrylamides explained the oxidative stress response and cytotoxicity in the cells, and the lack of reactivity of the methacrylamides led to baseline toxicity.


Assuntos
Acrilamida , Acrilamidas , Animais , Humanos , Acrilamidas/toxicidade , Acrilamida/toxicidade , Glutationa/metabolismo , Estresse Oxidativo , Oxirredução
17.
Front Toxicol ; 5: 1221625, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37564394

RESUMO

In vitro cell-based bioassays have great potential for applications in the human health risk assessment of chemicals. The quantification of freely dissolved concentrations (C free) in in vitro assays is essential to generate reliable data for in vitro-to-in vivo extrapolation. Existing methods for the quantification of C free are limited to low-throughput microtiter plates. The present study is a proof of principle for the applicability of a solid-phase microextraction (SPME) method for the determination of C free in the peroxisome proliferator-activated receptor gamma (PPARγ) bioassay run in 384-well plates with 80 µL medium per well. The effect concentrations obtained from 384-well plates were compared with those obtained from 96-well plates in a previous study. Nominal effect concentrations obtained using 96- and 384-well plates agreed with each other within a factor of three, and freely dissolved effect concentrations agreed within a factor of 6.5. The good degree of agreement in the results from both plate formats proves the general applicability of the SPME method for the determination of C free for bioassays in 384-well plates, making the present study a first step toward exposure assessment in high-throughput bioassays.

18.
Environ Int ; 178: 107957, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37406370

RESUMO

Monitoring methodologies reflecting the long-term quality and contamination of surface waters are needed to obtain a representative picture of pollution and identify risk drivers. This study sets a baseline for characterizing chemical pollution in the Danube River using an innovative approach, combining continuous three-months use of passive sampling technology with comprehensive chemical (747 chemicals) and bioanalytical (seven in vitro bioassays) assessment during the Joint Danube Survey (JDS4). This is one of the world's largest investigative surface-water monitoring efforts in the longest river in the European Union, which water after riverbank filtration is broadly used for drinking water production. Two types of passive samplers, silicone rubber (SR) sheets for hydrophobic compounds and AttractSPETM HLB disks for hydrophilic compounds, were deployed at nine sites for approximately 100 days. The Danube River pollution was dominated by industrial compounds in SR samplers and by industrial compounds together with pharmaceuticals and personal care products in HLB samplers. Comparison of the Estimated Environmental Concentrations with Predicted No-Effect Concentrations revealed that at the studied sites, at least one (SR) and 4-7 (HLB) compound(s) exceeded the risk quotient of 1. We also detected AhR-mediated activity, oxidative stress response, peroxisome proliferator-activated receptor gamma-mediated activity, estrogenic, androgenic, and anti-androgenic activities using in vitro bioassays. A significant portion of the AhR-mediated and estrogenic activities could be explained by detected analytes at several sites, while for the other bioassays and other sites, much of the activity remained unexplained. The effect-based trigger values for estrogenic and anti-androgenic activities were exceeded at some sites. The identified drivers of mixture in vitro effects deserve further attention in ecotoxicological and environmental pollution research. This novel approach using long-term passive sampling provides a representative benchmark of pollution and effect potentials of chemical mixtures for future water quality monitoring of the Danube River and other large water bodies.


Assuntos
Poluentes Químicos da Água , Qualidade da Água , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Antagonistas de Androgênios , Ecotoxicologia , Estrona , Rios/química
19.
Environ Sci Technol ; 57(26): 9474-9494, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37335844

RESUMO

The global spread of antimicrobial resistance (AMR) is concerning for the health of humans, animals, and the environment in a One Health perspective. Assessments of AMR and associated environmental hazards mostly focus on antimicrobial parent compounds, while largely overlooking their transformation products (TPs). This review lists antimicrobial TPs identified in surface water environments and examines their potential for AMR promotion, ecological risk, as well as human health and environmental hazards using in silico models. Our review also summarizes the key transformation compartments of TPs, related pathways for TPs reaching surface waters and methodologies for studying the fate of TPs. The 56 antimicrobial TPs covered by the review were prioritized via scoring and ranking of various risk and hazard parameters. Most data on occurrences to date have been reported in Europe, while little is known about antibiotic TPs in Africa, Central and South America, Asia, and Oceania. Occurrence data on antiviral TPs and other antibacterial TPs are even scarcer. We propose evaluation of structural similarity between parent compounds and TPs for TP risk assessment. We predicted a risk of AMR for 13 TPs, especially TPs of tetracyclines and macrolides. We estimated the ecotoxicological effect concentrations of TPs from the experimental effect data of the parent chemical for bacteria, algae and water fleas, scaled by potency differences predicted by quantitative structure-activity relationships (QSARs) for baseline toxicity and a scaling factor for structural similarity. Inclusion of TPs in mixtures with their parent increased the ecological risk quotient over the threshold of one for 7 of the 24 antimicrobials included in this analysis, while only one parent had a risk quotient above one. Thirteen TPs, from which 6 were macrolide TPs, posed a risk to at least one of the three tested species. There were 12/21 TPs identified that are likely to exhibit a similar or higher level of mutagenicity/carcinogenicity, respectively, than their parent compound, with tetracycline TPs often showing increased mutagenicity. Most TPs with increased carcinogenicity belonged to sulfonamides. Most of the TPs were predicted to be mobile but not bioaccumulative, and 14 were predicted to be persistent. The six highest-priority TPs originated from the tetracycline antibiotic family and antivirals. This review, and in particular our ranking of antimicrobial TPs of concern, can support authorities in planning related intervention strategies and source mitigation of antimicrobials toward a sustainable future.


Assuntos
Tetraciclina , Poluentes Químicos da Água , Animais , Humanos , Antibacterianos , Sulfonamidas , Simulação por Computador , Resistência Microbiana a Medicamentos , Poluentes Químicos da Água/toxicidade
20.
Environ Sci Process Impacts ; 25(11): 1802-1816, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37132588

RESUMO

The present study complements work on mixture effects measured with in vitro bioassays of passive equilibrium sampling extracts using the silicone polydimethylsiloxane (PDMS) in organs from marine mammals with chemical profiling. Blubber, liver, kidney and brain tissues of harbor porpoise (Phocoena phocoena), harbor seal (Phoca vitulina), ringed seal (Phoca hispida) and orca (Orcinus orca) from the North and Baltic Seas were investigated. We analyzed 117 chemicals including legacy and emerging contaminants using gas chromatography-high resolution mass spectrometry and quantified 70 of those chemicals in at least one sample. No systematic differences between the organs were found. Only for single compounds a clear distribution pattern was observed. For example, 4,4'-dichlorodiphenyltrichloroethane, enzacamene and etofenprox were mainly detected in blubber, whereas tonalide and the hexachlorocyclohexanes were more often found in liver. Furthermore, we compared the chemical profiling with the bioanalytical results using an iceberg mixture model, evaluating how much of the biological effect could be explained by the analyzed chemicals. The mixture effect predicted from the quantified chemical concentrations explained 0.014-83% of the aryl hydrocarbon receptor activating effect (AhR-CALUX), but less than 0.13% for the activation of the oxidative stress response (AREc32) and peroxisome-proliferator activated receptor (PPARγ). The quantified chemicals also explained between 0.044-45% of the cytotoxic effect measured with the AhR-CALUX. The largest fraction of the observed effect was explained for the orca, which was the individuum with the highest chemical burden. This study underlines that chemical analysis and bioassays are complementary to comprehensively characterize the mixture exposome of marine mammals.


Assuntos
Expossoma , Focas Verdadeiras , Poluentes Químicos da Água , Animais , Cromatografia Gasosa-Espectrometria de Massas , Fígado/química , Bioensaio , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...