Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(4): e15304, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37077673

RESUMO

Nowadays, due to stricter pollution standards, more attention has been focused on pollutants emitted from cars. As a very dangerous pollutant, NOx has always triggered the sensitivity of the related organizations. In the process of developing and designing the engine, estimating the amount of this pollutant is of great importance to reduce future expenses. Calculating the amount of this pollutant has usually been complicated and prone to error. In the present paper, neural networks have been used to find the coefficients of correcting NOx calculation. The Zeldovich method calculated the value of NOx with 20% error. By applying the progressive neural network and correcting the equation coefficient, this value decreased. The related model has been validated with other fuel equivalence ratios. The neural network model has fitted the experimental points with a convergence ratio of 0.99 and a squared error of 0.0019. Finally, the value of NOx anticipated by the neural network has been calculated and validated according to empirical data by applying maximum genetic algorithm. The maximum point for the fuel composed of 20% hydrogen and 80% methane occurred in the equivalence ratio of 0.9; and the maximum point for the fuel composed of 40% hydrogen occurred in equivalence ratio of 0.92. The consistency of the model findings with the empirical data shows the potential of the neural network in anticipating the amount of NOx.

2.
Heliyon ; 9(3): e14414, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36950616

RESUMO

The use of renewable energy is necessary to achieve the goals of sustainable development, and sooner or later all countries are forced to plan and make policies for the use of this equipment. Considering the growing trend of smart systems and the ability of these systems to control and use renewable resources, it is necessary to investigate how to control and optimally use these resources in smart systems. Considering the geographical conditions and significant solar energy radiation in Iran, the most suitable option for using renewable energy in residential buildings is solar energy. Among the types of solar energy used around the world, photovoltaic panels are used more due to their wide range, being cheaper than other sources of electric power from solar energy and more durable than other sources. In order to reduce widespread losses and reduce the cost of transmission and distribution, increase efficiency, the possibility of the presence of private sector investors and increase the security and stability of the power grid, distributed production of electrical energy at consumption locations using small-scale units is the most cost-effective way to use home solar panels. Also, the production of energy from wind turbines can be done in the areas where anemometer data determine it to be suitable. The combination of solar energy and wind energy can effectively reduce the need for batteries, but studies show that this combination is only economically viable when it is used on a large scale and with high powers, which requires a lot of investment. Large initial capital is one of the biggest problems of distributed production systems, so the use of artificial intelligence methods for accurate capacity determination of renewable energy production systems becomes doubly important. The economic results show that the least cost of electricity and net price cost are 0.44 $ per kWh and 15.0 million $ respectively, when the converter size was gradually changed, with a renewable fraction of 46.7%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...