Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Mol Diagn ; 26(6): 498-509, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522837

RESUMO

Fragile X syndrome (FXS) is the most common heritable form of intellectual disability and is caused by CGG repeat expansions exceeding 200 (full mutation). Such expansions lead to hypermethylation and transcriptional silencing of the fragile X messenger ribonucleoprotein 1 (FMR1) gene. As a consequence, little or no FMR1 protein (FMRP) is produced; absence of the protein, which normally is responsible for neuronal development and maintenance, causes the syndrome. Previous studies have demonstrated the causal relationship between FMRP levels and cognitive abilities in peripheral blood mononuclear cells (PBMCs) and dermal fibroblast cell lines of patients with FXS. However, it is arguable whether PBMCs or fibroblasts would be the preferred surrogate for measuring molecular markers, particularly FMRP, to represent the cognitive impairment, a core symptom of FXS. To address this concern, CGG repeats, methylation status, FMR1 mRNA, and FMRP levels were measured in both PBMCs and fibroblasts derived from 66 individuals. The findings indicated a strong association between FMR1 mRNA expression levels and CGG repeat numbers in PBMCs of premutation males after correcting for methylation status. Moreover, FMRP expression levels from both PBMCs and fibroblasts of male participants with a hypermethylated full mutation and with mosaicism demonstrated significant association between the intelligence quotient levels and FMRP levels, suggesting that PBMCs may be preferable for FXS clinical studies, because of their greater accessibility.


Assuntos
Metilação de DNA , Fibroblastos , Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Leucócitos Mononucleares , Mutação , Humanos , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Fibroblastos/metabolismo , Leucócitos Mononucleares/metabolismo , Masculino , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/sangue , Síndrome do Cromossomo X Frágil/diagnóstico , Feminino , Adulto , RNA Mensageiro/genética , Adolescente , Expansão das Repetições de Trinucleotídeos/genética , Adulto Jovem , Inteligência/genética , Pessoa de Meia-Idade , Criança
2.
PLoS One ; 14(12): e0226811, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31891607

RESUMO

Fragile X syndrome, the leading heritable form of intellectual disability, is caused by hypermethylation and transcriptional silencing of large (CGG) repeat expansions (> 200 repeats) in the 5' untranslated region of the fragile X mental retardation 1 (FMR1) gene. As a consequence of FMR1 gene silencing, there is little or no production of FMR1 protein (FMRP), an important element in normal synaptic function. Although the absence of FMRP has long been known to be responsible for the cognitive impairment in fragile X syndrome, the relationship between FMRP level and cognitive ability (IQ) is only imprecisely understood. To address this issue, a high-throughput, fluorescence resonance energy transfer (FRET) assay has been used to quantify FMRP levels in dermal fibroblasts, and the relationship between FMRP and IQ measures was assessed by statistical analysis in a cohort of 184 individuals with CGG-repeat lengths spanning normal (< 45 CGGs) to full mutation (> 200 CGGs) repeat ranges in fibroblasts. The principal findings of the current study are twofold: i) For those with normal CGG repeats, IQ is no longer sensitive to further increases in FMRP above an FMRP threshold of ~70% of the mean FMRP level; below this threshold, IQ decreases steeply with further decreases in FMRP; and ii) For the current cohort, a mean IQ of 85 (lower bound for the normal IQ range) is attained for FMRP levels that are only ~35% of the mean FMRP level among normal CGG-repeat controls. The current results should help guide expectations for efforts to induce FMR1 gene activity and for the levels of cognitive function expected for a given range of FMRP levels.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Inteligência/genética , Expansão das Repetições de Trinucleotídeos/genética , Adolescente , Adulto , Idoso , Criança , Cognição , Estudos de Coortes , Feminino , Fibroblastos , Inativação Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Escalas de Wechsler , Adulto Jovem
3.
eNeurologicalSci ; 7: 49-56, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28971146

RESUMO

The prevalence of the fragile X premutation (55-200 CGG repeats) among the general population is relatively high, but there remains a lack of clear understanding of the links between molecular biomarkers and clinical outcomes. In this study we investigated the correlations between molecular measures (CGG repeat size, FMR1 mRNA, FMRP expression levels, and methylation status at the promoter region and in FREE2 site) and clinical phenotypes (anxiety, obsessive compulsive symptoms, depression and executive function deficits) in 36 adult premutation female carriers and compared to 24 normal control subjects. Premutation carriers reported higher levels of obsessive compulsive symptoms, depression, and anxiety, but demonstrated no significant deficits in global cognitive functions or executive function compared to the control group. Increased age in carriers was significantly associated with increased anxiety levels. As expected, FMR1 mRNA expression was significantly correlated with CGG repeat number. However, no significant correlations were observed between molecular (including epigenetic) measures and clinical phenotypes in this sample. Our study, albeit limited by the sample size, establishes the complexity of the mechanisms that link the FMR1 locus to the clinical phenotypes commonly observed in female carriers suggesting that other factors, including environment or additional genetic changes, may have an impact on the clinical phenotypes. However, it continues to emphasize the need for assessment and treatment of psychiatric problems in female premutation carriers.

4.
Hum Mol Genet ; 26(14): 2649-2666, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28444183

RESUMO

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurological disorder that affects premutation carriers with 55-200 CGG-expansion repeats (preCGG) in FMR1, presenting with early alterations in neuronal network formation and function that precede neurodegeneration. Whether intranuclear inclusions containing DNA damage response (DDR) proteins are causally linked to abnormal synaptic function, neuronal growth and survival are unknown. In a mouse that harbors a premutation CGG expansion (preCGG), cortical and hippocampal FMRP expression is moderately reduced from birth through adulthood, with greater FMRP reductions in the soma than in the neurite, despite several-fold elevation of Fmr1 mRNA levels. Resting cytoplasmic calcium concentration ([Ca2+]i) in cultured preCGG hippocampal neurons is chronically elevated, 3-fold compared to Wt; elevated ROS and abnormal glutamatergic responses are detected at 14 DIV. Elevated µ-calpain activity and a higher p25/p35 ratio in the cortex of preCGG young adult mice indicate abnormal Cdk5 regulation. In support, the Cdk5 substrate, ATM, is upregulated by 1.5- to 2-fold at P0 and 6 months in preCGG brain, as is p-Ser1981-ATM. Bax:Bcl-2 is 30% higher in preCGG brain, indicating a greater vulnerability to apoptotic activation. Elevated [Ca2+]i, ROS, and DDR signals are normalized with dantrolene. Chronic [Ca2+]i dysregulation amplifies Cdk5-ATM signaling, possibly linking impaired glutamatergic signaling and DDR to neurodegeneration in preCGG brain.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Ataxia/genética , Ataxia/metabolismo , Cálcio/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Tremor/genética , Tremor/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Quinase 5 Dependente de Ciclina/genética , Modelos Animais de Doenças , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/patologia , RNA Mensageiro/metabolismo , Expansão das Repetições de Trinucleotídeos
5.
Hum Mol Genet ; 23(12): 3228-38, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24463622

RESUMO

Large expansions of a CGG-repeat element (>200 repeats; full mutation) in the fragile X mental retardation 1 (FMR1) gene cause fragile X syndrome (FXS), the leading single-gene form of intellectual disability and of autism spectrum disorder. Smaller expansions (55-200 CGG repeats; premutation) result in the neurodegenerative disorder, fragile X-associated tremor/ataxia syndrome (FXTAS). Whereas FXS is caused by gene silencing and insufficient FMR1 protein (FMRP), FXTAS is thought to be caused by 'toxicity' of expanded-CGG-repeat mRNA. However, as FMRP expression levels decrease with increasing CGG-repeat length, lowered protein may contribute to premutation-associated clinical involvement. To address this issue, we measured brain Fmr1 mRNA and FMRP levels as a function of CGG-repeat length in a congenic (CGG-repeat knock-in) mouse model using 57 wild-type and 97 expanded-CGG-repeat mice carrying up to ~250 CGG repeats. While Fmr1 message levels increased with repeat length, FMRP levels trended downward over the same range, subject to significant inter-subject variation. Human comparisons of protein levels in the frontal cortex of 7 normal and 17 FXTAS individuals revealed that the mild FMRP decrease in mice mirrored the more limited data for FMRP expression in the human samples. In addition, FMRP expression levels varied in a subset of mice across the cerebellum, frontal cortex, and hippocampus, as well as at different ages. These results provide a foundation for understanding both the CGG-repeat-dependence of FMRP expression and for interpreting clinical phenotypes in premutation carriers in terms of the balance between elevated mRNA and lowered FMRP expression levels.


Assuntos
Cerebelo/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/patologia , Lobo Frontal/metabolismo , Hipocampo/metabolismo , Expansão das Repetições de Trinucleotídeos , Animais , Modelos Animais de Doenças , Feminino , Síndrome do Cromossomo X Frágil/genética , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Especificidade de Órgãos , RNA Mensageiro/metabolismo
6.
J Lipid Res ; 51(5): 1035-48, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19965617

RESUMO

The structural features responsible for the activities of hepatic lipase (HL) can be clarified by in vivo comparisons of naturally occurring variants. The coding sequence of HL from C57BL/6J (B6) and SPRET/EiJ (SPRET) mice differs by four amino acids (S106N, A156V, L416V, S480T); however, these changes are not predicted to influence HL function. To test for allelic effects, we generated SPRET-HL transgenics with physiological levels of HL mRNA and HL activity that was parallel in female transgenics and about 70% higher in male transgenics, toward tri-[3H]oleate, compared with B6 controls. We found no correlation between activity levels and plasma lipids. However, significant allelic effects on plasma lipids were observed. Compared with B6-HL, SPRET-HL mediated reductions in total cholesterol (TC) and VLDL-, LDL- and HDL-cholesterol and HDL-triglyceride (TG) in fed males, and SPRET-HL decreased total TG and VLDL- and HDL-TG levels in fasted males. Fasted female transgenics had reduced TC compared with controls. We also found allele and sex effects on lipoprotein particle size. Male transgenic mice had increased VLDL and decreased LDL size, and female transgenic mice had decreased HDL size compared with control animals. These findings demonstrate highly divergent effects of naturally occurring HL coding sequence variants on lipid and lipoprotein metabolism.


Assuntos
Alelos , Lipase/genética , Lipase/metabolismo , Lipoproteínas/química , Tamanho da Partícula , Animais , Cromatografia Líquida de Alta Pressão , Cromossomos Artificiais Bacterianos , Cromossomos de Mamíferos/genética , Feminino , Homozigoto , Lipase/química , Lipoproteínas/sangue , Lipoproteínas/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Obesidade/genética , Obesidade/mortalidade , Obesidade/fisiopatologia , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Relação Estrutura-Atividade
7.
Mol Brain ; 2: 14, 2009 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-19490636

RESUMO

BACKGROUND: In vitro reactions are useful to identify putative enzyme substrates, but in vivo validation is required to identify actual enzyme substrates that have biological meaning. To investigate in vivo effects of prolyl endopeptidase (PREP), a serine protease, on alpha melanocyte stimulating hormone (alpha-MSH), we developed a new mass spectrometry based technique to quantitate, in multiplex, the various forms of alpha-MSH. METHODS: Using Multiple Reaction Monitoring (MRM), we analyzed peptide transitions to quantify three different forms of alpha-MSH. Transitions were first confirmed using standard peptides. Samples were then analyzed by mass spectrometry using a triple quadrupole mass spectrometer, after elution from a reverse phase C18 column by a gradient of acetonitrile. RESULTS: We first demonstrate in vitro that PREP digests biological active alpha melanocyte stimulating hormone (alpha-MSH(1-13)), by cleaving the terminal amidated valine and releasing a truncated alpha melanocyte stimulating hormone (alpha-MSH(1-12)) product--the 12 residues alpha-MSH form. We then use the technique in vivo to analyze the MRM transitions of the three different forms of alpha-MSH: the deacetylated alpha-MSH(1-13), the acetylated alpha-MSH(1-13) and the truncated form alpha-MSH(1-12). For this experiment, we used a mouse model (PREP-GT) in which the serine protease, prolyl endopeptidase, is deficient due to a genetrap insertion. Here we report that the ratio between acetylated alpha-MSH(1-13) and alpha-MSH(1-12) is significantly increased (P-value = 0.015, N = 6) in the pituitaries of PREP-GT mice when compared to wild type littermates. In addition no significant changes were revealed in the relative level of alpha-MSH(1-13) versus the deacetylated alpha-MSH(1-13). These results combined with the demonstration that PREP digests alpha-MSH(1-13) in vitro, strongly suggest that alpha-MSH(1-13) is an in vivo substrate of PREP. CONCLUSION: The multiplex targeted quantitative peptidomics technique we present in this study will be decidedly useful to monitor several neuropeptide enzymatic reactions in vivo under varying conditions.


Assuntos
Hipófise/metabolismo , Proteômica/métodos , Serina Endopeptidases/deficiência , alfa-MSH/metabolismo , Acetilação , Animais , Western Blotting , Genótipo , Camundongos , Prolil Oligopeptidases , Isoformas de Proteínas/metabolismo , Serina Endopeptidases/metabolismo , Especificidade por Substrato , Fatores de Tempo
8.
Physiol Genomics ; 31(1): 75-85, 2007 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-17536020

RESUMO

We previously constructed a congenic mouse, B6.S-D2Mit194-D2Mit311 (B6.S-2) with 27 Mb of SPRET/Ei donor DNA on distal chromosome 2 in a C57BL/6J background that captured an obesity quantitative trait locus (QTL). Mice homozygous for SPRET/Ei alleles at the donor region had decreased body weight and obesity-related phenotypes (Diament AL, Farahani P, Chiu S, Fisler J, Warden CH. Mamm Genome 15: 452-459, 2004). In this study, we constructed five overlapping subcongenics with smaller SPRET/Ei donor regions to fine map the underlying gene(s). One of the five subcongenic lines derived from the B6.S-2 founding congenic, B6.S-2A, captured the body weight and adiposity phenotypes in a donor region with a maximum size of 7.4 Mb. Homozygous SPRET/Ei donor alleles in both the founding congenic and the derived B6.S-2A subcongenic exhibited significant decreases in body weight, multiple fat pad weights, and adiposity index (total fat pad weight divided by body weight). Interval-specific microarray analysis in four tissues for donor region genes from the founding B6.S-2 congenic identified several differentially expressed genes mapping to the B6.S-2A subcongenic donor region, including prohormone convertase 2 (PC2; gene name: Pcsk2). Quantitative real-time PCR confirmed a modest decrease of PC2 expression in brains of mice homozygous for SPRET/Ei donor alleles. Analysis of the relative levels of mRNA for B6 and SPRET/Ei in heterozygous congenic mice showed differentially higher expression of the C57BL/6J allele over the SPRET/Ei allele, indicating a cis regulation of differential expression. Using subcongenic mapping, we successfully narrowed a body weight and obesity QTL interval and identified PC2 as a positional candidate gene.


Assuntos
Tecido Adiposo/metabolismo , Locos de Características Quantitativas , Alelos , Animais , Peso Corporal , Cromossomos/ultraestrutura , Técnicas Genéticas , Genótipo , Heterozigoto , Homozigoto , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Obesidade , Análise de Sequência com Séries de Oligonucleotídeos
9.
Obes Res ; 12(8): 1243-55, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15340107

RESUMO

OBJECTIVE: Effects of ectopic expression of the agouti signaling protein were studied on responses to diet restriction and exercise in C57BL/6J (B6) mice and obese B6 mice congenic for the yellow agouti mutation [B6.Cg-Ay (Ay)]. RESEARCH METHODS AND PROCEDURES: Adult male Ay mice were either kept sedentary or exercised on a running wheel and fed ad libitum or diet restricted until weight matched to ad libitum-fed B6 control mice. Body composition, plasma lipids, leptin, and adiponectin were measured. mRNA levels for leptin, adiponectin, lipoprotein lipase, and pyruvate dehydrogenase kinase 4 were measured in a visceral (epididymal) and a subcutaneous (femoral) fat depot by real-time polymerase chain reaction. RESULTS: Correlations among traits exhibited one of three patterns: similar lines for B6 and Ay mice, different slopes for B6 and Ay mice, and/or different intercepts for B6 and Ay mice. Correlations involving plasma leptin, mesenteric and epididymal adipose weights, or low-density lipoprotein-cholesterol were most likely to have different slopes and/or intercepts in B6 and Ay mice. mRNA levels for leptin, Acrp30, pyruvate dehydrogenase kinase 4, and lipoprotein lipase in epididymal adipose tissue were not correlated with corresponding levels in femoral adipose tissue. DISCUSSION: The agouti protein interferes with leptin signaling at melanocortin receptors in the hypothalamus of Ay mice. Our results are consistent with the hypothesis that the melanocortin portion of the leptin-signaling pathway mediates effects primarily on certain fat depots and on some, but not all, components of cholesterol homeostasis.


Assuntos
Dieta , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mutação , Esforço Físico , Adiponectina , Tecido Adiposo/anatomia & histologia , Tecido Adiposo/química , Proteína Agouti Sinalizadora , Animais , Composição Corporal , Peso Corporal , Colesterol/sangue , Ingestão de Alimentos , Privação de Alimentos , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Leptina/sangue , Leptina/genética , Lipídeos/sangue , Lipase Lipoproteica/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , Tamanho do Órgão , Proteínas Quinases/genética , Proteínas/análise , Proteínas/genética , RNA Mensageiro/análise , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...