Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38398179

RESUMO

Inflammatory bowel disease (IBD), characterized by chronic inflammation in the intestinal tract, increases the risk for the development of colorectal cancer (CRC). Sphingolipids, which have been implicated in IBD and CRC, are a class of bioactive lipids that regulate cell signaling, differentiation, apoptosis, inflammation, and survival. The balance between ceramide (Cer), the central sphingolipid involved in apoptosis and differentiation, and sphingosine-1-phosphate (S1P), a potent signaling molecule involved in proliferation and inflammation, is vital for the maintenance of normal cellular function. Altered sphingolipid metabolism has been implicated in IBD and CRC, with many studies highlighting the importance of S1P in inflammatory signaling and pro-survival pathways. A myriad of sphingolipid analogues, inhibitors, and modulators have been developed to target the sphingolipid metabolic pathway. In this review, the efficacy and therapeutic potential for modulation of sphingolipid metabolism in IBD and CRC will be discussed.

2.
Prostaglandins Other Lipid Mediat ; 169: 106769, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37625781

RESUMO

Charcot-Marie-Tooth Disease (CMT) is a commonly inherited peripheral polyneuropathy. Clinical manifestations for this disease include symmetrical distal polyneuropathy, altered deep tendon reflexes, distal sensory loss, foot deformities, and gait abnormalities. Genetic mutations in heat shock proteins have been linked to CMT2. Specifically, mutations in the heat shock protein B1 (HSPB1) gene encoding for heat shock protein 27 (Hsp27) have been linked to CMT2F and distal hereditary motor and sensory neuropathy type 2B (dHMSN2B) subtype. The goal of the study was to examine the role of an endogenous mutation in HSPB1 in vivo and to define the effects of this mutation on motor function and pathology in a novel animal model. As sphingolipids have been implicated in hereditary and sensory neuropathies, we examined sphingolipid metabolism in central and peripheral nervous tissues in 3-month-old HspS139F mice. Though sphingolipid levels were not altered in sciatic nerves from HspS139F mice, ceramides and deoxyceramides, as well as sphingomyelins (SMs) were elevated in brain tissues from HspS139F mice. Histology was utilized to further characterize HspS139F mice. HspS139F mice exhibited no alterations to the expression and phosphorylation of neurofilaments, or in the expression of acetylated α-tubulin in the brain or sciatic nerve. Interestingly, HspS139F mice demonstrated cerebellar demyelination. Locomotor function, grip strength and gait were examined to define the role of HspS139F in the clinical phenotypes associated with CMT2F. Gait analysis revealed no differences between HspWT and HspS139F mice. However, both coordination and grip strength were decreased in 3-month-old HspS139F mice. Together these data suggest that the endogenous S139F mutation in HSPB1 may serve as a mouse model for hereditary and sensory neuropathies such as CMT2F.


Assuntos
Doença de Charcot-Marie-Tooth , Camundongos , Animais , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Proteínas de Choque Térmico/genética , Mutação/genética , Modelos Animais de Doenças , Esfingolipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...