Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 278(Pt 1): 134672, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39134199

RESUMO

A hyperbranched poly (titanium oxide) (HBPTi) with hydroxyl terminal groups was synthesized via polycondensation reaction as a synergistic modifier with tannin to promote performance of casein-based composite film. The synergistic effects of HBPTis, acquiring different hyperbranched structures, with tannin on the microstructure, mechanical characteristics, barrier against water vapor, and thermal stability of casein-based film were investigated in this work. The tensile strength of the composite films increased from 7.6 MPa to 22.1 MPa, which accounts for 190.79 % increase after the addition of HBPTi compared to casein-tannin films modified with glycerol. The casein-tannin films with the help of HBPTi presented excellent water vapor permeation, thermal stability, and showed nearly 100 % UV absorption in the range 200-400 nm. Additionally, the microstructure of HBPTi modified casein-tannin films tend to be more compact due to the promoted interaction of casein-tannin composite aided by covalent bonding and/or other types of bonding between casein, tannin and HBPTi. Therefore, associative modification using such hyperbranched polymers and tannins provides extendable application value for casein-based films especially as food packaging materials and for other fields as well.

2.
Int J Biol Macromol ; : 133784, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39084972

RESUMO

In this study, various chitosan-based films such as chitosan (C), chitosan-condensed tannin (CT), chitosan-casein (CC), and chitosan-casein-condensed tannin (CCT) films were prepared for the purpose of food packaging. In order to improve the hydrophobicity of these films, carnauba wax was blended into CCT to produce CCTW film. Properties such as morphology, UV resistance, water solubility, barrier performance, tensile strength, antioxidant, antibacterial and its performance as food packaging were evaluated. Compared with other chitosan-based films, CCTW films exhibited higher UV resistance, tensile strength, thermal stability and hydrophobicity. The addition of both condensed tannin and carnauba wax has significantly decreased the water vapor and oxygen permeability of the CCTW films. The CCTW films were proved capable of repelling most daily consuming liquids. Besides, CCTW films displayed outstanding free radical scavenging rate and antibacterial properties. Meanwhile, bananas wrapped with CCTW films remained fresh for seven days without any mold growth and outperformed other types of films. Apart from that, the CCTW films also showed biodegradable characteristics after exposure to Penicillium sp. These distinguished characteristics made the CCTW films a promising packaging material for long-term food storage.

3.
Int J Biol Macromol ; 269(Pt 1): 132043, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38702005

RESUMO

Starch adhesive is a commonly used bonding glue that is sustainable, formaldehyde-free and biodegradable. However, there are obviously some problems related to its high viscosity, poor water and mildew resistance. Hence, exploring a starch-based adhesive with good properties that satisfies the requirements of wood processing presents the context of the current research. Thus, corn starch was used as raw material to form oxidized starch (OCS) via oxidation using sodium periodate, it was reacted with a synthesis polyurea compound that prepared from hexanediamine-urea (HU) obtained by deamination to yield a oxidized starch-hexanediamine-urea adhesive (denoted hereafter as OCSHU). The oxidation process was optimized in terms of oxidant concentration, reaction time and temperature. Furthermore, the impact of HU addition on the mechanical properties of the adhesive was explored. Results indicate adhesive exhibited outstanding shear strength, when 13 % of NaIO4 was used as an oxidant to treat starch at 55 °C for 24 h, and involved in a subsequent reaction with 40 % of HU. The dry shear strength, 24 h cold water strength, 3 h hot water strength and 3 h boiling water strength are 1.84, 1.50, 1.32, and 1.31 MPa. Meantime, OCSHU adhesive solution revealed good storage stability whereas cured resin exhibited mildew resistance. The developed adhesive is a simple and green biomass wood adhesive.


Assuntos
Adesivos , Amido , Água , Zea mays , Amido/química , Água/química , Adesivos/química , Zea mays/química , Oxirredução , Temperatura , Resistência ao Cisalhamento , Ureia/química
4.
Polymers (Basel) ; 16(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38475323

RESUMO

In order to solve the problem of excessive consumption of petrochemical resources and the harm of free formaldehyde release to human health, biomass raw materials, such as sucrose (S) and ammonium dihydrogen phosphate (ADP) can be chemically condensed in a simple route under acidic conditions to produce a formaldehyde free wood adhesive (S-ADP), characterized by good storage stability and water resistance, and higher wet shear strength with respect to petroleum based phenolic resin adhesive. The dry and boiling shear strength of the plywood based on S-ADP adhesive are as high as 1.05 MPa and 1.19 MPa, respectively. Moreover, is Modulus of Elasticity (MOE) is as high as 4910 MPa. Interestingly, the plywood based on the developed S-ADP adhesive exhibited good flame retardancy. After burning for 90 s, its shape remains unchanged. Meanwhile, it can be concluded from thermomechanical analysis (TMA) and thermogravimetric analysis (TGA) that the S-ADP acquired excellent modulus of elasticity (MOE) and good thermal stability. It is thus thought promisingly that the use of S-ADP adhesive as a substitute for PF resin adhesive seems feasible in the near future.

5.
Int J Biol Macromol ; 262(Pt 1): 130067, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336318

RESUMO

The use of metal catalysts during the production process of cellulose acetate (CA) film can have an impact on the environment, due to their toxicity. Diphenyl phosphate (DPP) was used instead of toxic metal catalyst to react with cellulose acetate, tannin (T) and caprolactone (CL) for preparation of cellulose acetate-caprolactone-tannin (CA-CL-T) film. The results show that DPP can produce a cross-linked network structure composed of tannin, caprolactone and cellulose acetate. The maximum molecular weight reached 113,260 Da. The introduction of tannin and caprolactone into cellulose acetate caused the resulting CA-CL-T film acquire excellent strengthening/toughening effect, in which a tensile strength of 23 MPa and elongation at break of 18 % were attained. More importantly, the resistance of the film to UV radiation was significantly improved with the tannin addition, which was corroborated by the CA-CL-T film still exhibiting a tensile strength of 13 MPa and elongation at break around 13 % after continuous exposure to UV radiation for 9 days. On the other hand, the insertion of caprolactone provoked enhancement of the overall moisture resistance. Five days treatment of the films with Penicillium sp. induced gradual drop in quality, indicating the CA-CL-T film show response to biodegradation. In all, the effective crosslinking between the components of the developed material is responsible for the acquired set of these distinct characteristics.


Assuntos
Caproatos , Celulose/análogos & derivados , Lactonas , Taninos , Resistência à Tração
6.
Int J Biol Macromol ; 264(Pt 1): 130020, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38336332

RESUMO

Wood-based panels find widespread application in the furniture and construction industries. However, over 90 % of adhesives used are synthesized with formaldehyde, leading to formaldehyde emission and associated health risks. In this study, an entirely bio-based adhesive (OSL) was innovatively proposed through the condensation of multi-aldehyde derived from the oxidization of sucrose (OS) with sodium lignosulfonate (L). This approach positioned oxidized sucrose (OS) as a viable substitute for formaldehyde, ensuring safety, simplicity, and enhance water resistance upon reaction with L. The optimization of the OSL adhesive preparation process involved determining the oxidant level for high sucrose conversion to aldehyde (13 % based on sucrose), the mass ratio of OS to L (0.8), and hot-pressing temperature (200 °C). Notably, the shear strength of 3-plywood bonded with the developed adhesive (1.04 MPa) increased to 1.42 MPa after being immersed in hot water at 63 ±â€¯3 °C for 3 h. Additionally, the plywood specimens exhibited excellent performance after soaking in boiling water for 3 h, resulting in a shear strength of 1.03 MPa. Chemical analysis using Fourier-transform infrared spectroscopy (FTIR), 1H nuclear magnetic resonance (NMR), and X-ray photoelectron spectroscopy (XPS) confirmed an addition reaction between L and OS, forming a dense network structure, effectively enhanceing the water resistance of OSL adhesives. Furthermore, compared with lignin-formaldehyde resin adhesive (LF), the OSL adhesive exhibited superior wet shear strength. This study offered an innovative approach for developing lignin-based adhesives utilizing a biomass aldehyde (OS), as a promising substitute for formaldehyde in the wood industry. The findings indicated that this approach may advance lignin-based adhesives, ensuring resistance to strength deterioration under highly humid environmental conditions.


Assuntos
Lignina , Água , Lignina/química , Aldeídos , Adesivos/química , Formaldeído/química , Sacarose
7.
J Mech Behav Biomed Mater ; 151: 106372, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38211500

RESUMO

OBJECTIVES: This study investigated the impact of using γ-methacryloxypropyl trimethoxy silane (MPS) for surface silanization of poly (urea-formaldehyde) (PUF) microcapsules which enclose a healing liquid of "triethylene glycol dimethacrylate (TEGDMA) and N,N dihydroxyethyl-p-toluidine (DHEPT)" on some mechanical properties of an experimental dental composite as well as its self-healing efficiency. METHODS: Synthesis of PUF microcapsules was done via in situ polymerization, followed by silanization with MPS silane. Silanized and non-silanized microcapsules were incorporated into a composite containing 30% polymer matrix and 70% fillers at different weight percentages (0%, 5%, 7.5% and 10%). The composite strength and elastic modulus were evaluated by Flexural testing. Fracture toughness KIc and self-healing efficiency were assessed by utilizing the "single edge notched beam" method. RESULTS: Flexural strength of all groups containing silanized microcapsules was non-significantly different from control group without microcapsules. However, in contrast to control group, all groups containing non-silanized microcapsules displayed considerably decreased flexural strength. Adding silanized and non-silanized microcapsules didn't show a significant change in the KIc-virgin. The silanized microcapsules' groups achieved a self-healing efficiency of about 49-77% recovery in KIc-virgin compared to 38-69% for their non-silanized counterparts. SIGNIFICANCE: In order to increase the interfacial adhesion with the polymer matrix, improve the mechanical properties, and increase the efficiency of self-healing of dental resin composite, PUF microcapsules were silanized for the first time in the dental field using MPS silane. This innovative silanized microcapsule-containing self-healing composite may hold promise for repairing the damage caused by restorative cracks and extending their service life.


Assuntos
Resinas Compostas , Resistência à Flexão , Cápsulas , Silanos , Polímeros , Formaldeído , Teste de Materiais , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...