Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Biol Lett ; 18(3): 20210552, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35259944

RESUMO

Evolutionary arms races can alter both parasite infectivity and host resistance, and it is difficult to separate the effects of these twin determinants of infection outcomes. We used a co-introduced, invasive host-parasite system (the lungworm Rhabdias pseudosphaerocephala and cane toads Rhinella marina), where rapid adaptation and dispersal have led to population differences in infection resistance. We quantified behavioural responses of parasite larvae to skin-chemical cues of toads from different invasive populations, and rates at which juvenile hosts became infected following standardized exposure to lungworms. Chemical cues from toad skin altered host-seeking behaviour by parasites, similarly among populations. The number of infection attempts (parasite larvae entering the host's body) also did not differ between populations, but rates of successful infection (establishment of adult worm in host lungs) were higher for range-edge toads than for range-core conspecifics. Thus, lower resistance to parasite infection in range-edge juvenile toads appears to be due to less effective immune defences of the host rather than differential behavioural responses of the parasite. In this ongoing host-parasite arms race, changing outcomes appear to be driven by shifts in host immunocompetence.


Assuntos
Parasitos , Infecções por Rhabditida , Rhabditoidea , Animais , Evolução Biológica , Bufo marinus , Espécies Introduzidas , Infecções por Rhabditida/epidemiologia , Infecções por Rhabditida/parasitologia , Rhabditoidea/fisiologia
2.
Philos Trans R Soc Lond B Biol Sci ; 376(1826): 20200125, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33866803

RESUMO

In response to novel environments, invasive populations often evolve rapidly. Standing genetic variation is an important predictor of evolutionary response but epigenetic variation may also play a role. Here, we use an iconic invader, the cane toad (Rhinella marina), to investigate how manipulating epigenetic status affects phenotypic traits. We collected wild toads from across Australia, bred them, and experimentally manipulated DNA methylation of the subsequent two generations (G1, G2) through exposure to the DNA methylation inhibitor zebularine and/or conspecific tadpole alarm cues. Direct exposure to alarm cues (an indicator of predation risk) increased the potency of G2 tadpole chemical cues, but this was accompanied by reductions in survival. Exposure to alarm cues during G1 also increased the potency of G2 tadpole cues, indicating intergenerational plasticity in this inducible defence. In addition, the negative effects of alarm cues on tadpole viability (i.e. the costs of producing the inducible defence) were minimized in the second generation. Exposure to zebularine during G1 induced similar intergenerational effects, suggesting a role for alteration in DNA methylation. Accordingly, we identified intergenerational shifts in DNA methylation at some loci in response to alarm cue exposure. Substantial demethylation occurred within the sodium channel epithelial 1 subunit gamma gene (SCNN1G) in alarm cue exposed individuals and their offspring. This gene is a key to the regulation of sodium in epithelial cells and may help to maintain the protective epidermal barrier. These data suggest that early life experiences of tadpoles induce intergenerational effects through epigenetic mechanisms, which enhance larval fitness. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'


Assuntos
Bufo marinus/fisiologia , Metilação de DNA , Epigênese Genética , Características de História de Vida , Animais , Austrália , Bufo marinus/genética , Bufo marinus/crescimento & desenvolvimento , Sinais (Psicologia) , Citidina/administração & dosagem , Citidina/análogos & derivados , Espécies Introduzidas , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/fisiologia
3.
Integr Comp Biol ; 60(6): 1481-1494, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-32544233

RESUMO

The developmental environment can exert powerful effects on animal phenotype. Recently, epigenetic modifications have emerged as one mechanism that can modulate developmentally plastic responses to environmental variability. For example, the DNA methylation profile at promoters of hormone receptor genes can affect their expression and patterns of hormone release. Across taxonomic groups, epigenetic alterations have been linked to changes in glucocorticoid (GC) physiology. GCs are metabolic hormones that influence growth, development, transitions between life-history stages, and thus fitness. To date, relatively few studies have examined epigenetic effects on phenotypic traits in wild animals, especially in amphibians. Here, we examined the effects of exposure to predation threat (alarm cues) and experimentally manipulated DNA methylation on corticosterone (CORT) levels in tadpoles and metamorphs of the invasive cane toad (Rhinella marina). We included offspring of toads sampled from populations across the species' Australian range. In these animals, exposure to chemical cues from injured conspecifics induces shifts in developmental trajectories, putatively as an adaptive response that lessens vulnerability to predation. We exposed tadpoles to these alarm cues, and measured changes in DNA methylation and CORT levels, both of which are mechanisms that have been implicated in the control of phenotypically plastic responses in tadpoles. To test the idea that DNA methylation drives shifts in GC physiology, we also experimentally manipulated methylation levels with the drug zebularine. We found differentially methylated regions (DMRs) between control tadpoles and their full-siblings exposed to alarm cues, zebularine, or both treatments. However, the effects of these manipulations on methylation patterns were weaker than clutch (e.g., genetic, maternal, etc.) effects. CORT levels were higher in larval cane toads exposed to alarm cues and zebularine. We found little evidence of changes in DNA methylation across the GC receptor gene (NR3C1) promoter region in response to alarm cue or zebularine exposure. In both alarm cue and zebularine-exposed individuals, we found differentially methylated DNA in the suppressor of cytokine signaling 3 gene (SOCS3), which may be involved in predator avoidance behavior. In total, our data reveal that alarm cues have significant impacts on tadpole physiology, but show only weak links between DNA methylation and CORT levels. We also identify genes containing DMRs in tadpoles exposed to alarm cues and zebularine, particularly in range-edge populations, that warrant further investigation.


Assuntos
Sinais (Psicologia) , Condicionamento Físico Animal , Animais , Austrália , Bufo marinus , Corticosterona , Epigênese Genética , Larva/genética , Comportamento Predatório
4.
Biol Rev Camb Philos Soc ; 94(3): 1143-1160, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30609279

RESUMO

Developmental stressors are increasingly recognised for their pervasive influence on the ecology and evolution of animals. In particular, many studies have focused on how developmental stress can give rise to variation in adult behaviour, physiology, and performance. However, there remains a poor understanding of whether general patterns exist in the effects and magnitude of phenotypic responses across taxonomic groups. Furthermore, given the extensive phenotypic variation that arises from developmental stressors, it remains important to ascertain how multiple processes may explain these responses. We compiled data from 111 studies to examine and quantify the effect of developmental stress on animal phenotype and performance from juveniles to adulthood, including studies from birds, reptiles, fish, mammals, insects, arachnids, and amphibians. Using meta-analytic approaches, we show that across all studies there is, on average, a moderate to large negative effect of developmental stress exposure (posterior mean effect: |d| = -0.51) on animal phenotype or performance. Additionally, we demonstrate that interactive effects of timing of stressor onset and the duration of exposure to stressors best explained variation in developmental stress responses. Animals exposed to stressors earlier in development had more-positive responses than those with later onset, whereas longer duration of exposure to a stressor caused responses to be stronger in magnitude. However, the high amount of heterogeneity in our results, and the low degree of variance explained by fixed effects in both the meta-analysis (R2 = 0.034) and top-ranked meta-regression model (R2 = 0.02), indicate that phenotypic responses to developmental stressors are likely highly idiosyncratic in nature and difficult to predict. Despite this, our analyses address a critical knowledge gap in understanding what effect developmental stress has on phenotypic variation in animals. Additionally, our results highlight important environmental and proximate factors that may influence phenotypic responses to developmental stressors.


Assuntos
Evolução Biológica , Ecossistema , Estresse Fisiológico , Adaptação Fisiológica/fisiologia , Animais , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...