Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 29(46): e202301487, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37309073

RESUMO

A novel strategy to treat Staphylococcus aureus (S. aureus) skin infections is presented, where UV light is used to facilitate concomitant light-controlled activation and delivery of an antimicrobial therapeutic agent. Specifically, a new photoswitchable gramicidin S analogue was immobilized onto a polymeric wearable patch via a photocleavable linker that undergoes photolysis at the same wavelength of light required for activation of the peptide. Unlike toxic gramicidin S, the liberated active photoswitchable peptide exhibits antimicrobial activity against S. aureus while being ostensibly non-haemolytic to red blood cells. Moreover, irradiation with visible light switches off the antimicrobial properties of the peptide within seconds, presenting an ideal strategy to regulate antibiotic activity for localized bacterial infections with the potential to mitigate resistance.


Assuntos
Anti-Infecciosos , Dispositivos Eletrônicos Vestíveis , Gramicidina/química , Peptídeos Antimicrobianos , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Peptídeos , Anti-Infecciosos/farmacologia
2.
J Mater Chem B ; 10(17): 3329-3343, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35380575

RESUMO

Engineered T-cell therapies have proven highly efficacious for the treatment of haematological cancers, but translation of this success to solid tumours has been limited, in part, due to difficulties in maintaining high doses at specific target sites. Hydrogel delivery systems that provide a sustained release of T-cells at the target site are emerging as a promising strategy. Therefore, in this study we aimed to develop an injectable hydrogel that gels in situ via efficient Diels-Alder cycloaddition (DAC) chemistry and provides a sustained release of T-cells through gradual hydrolysis of the hydrogel matrix. Hydrogels were prepared via the DAC between fulvene and maleimide functionalised poly(ethylene glycol) (PEG) derivatives. By adjusting the concentration and molecular weight of the functionalised PEGs in the hydrogel formulation the in vitro gelation time (Tgel), initial Young's modulus (E) and degradation time (Td) could be tailored from 15-150 min, 5-179 kPa and 7-114 h, respectively. Prior to gelation, the formulations could be readily injected through narrow gauge (26 G) needles with the working time correlating closely with the Tgel. A 5 wt% hydrogel formation with conjugated cyclic RGD motif was found to be optimal for the encapsulation and release of CD3+ T-cells with a near linear release profile and >70% cell viability over the first 4 d and release continuing out to 7 d. With their tuneable Tgel, Td and stiffness, the DAC hydrogels provide the opportunity to control the release period and profile of encapsulated cells.


Assuntos
Hidrogéis , Linfócitos T , Reação de Cicloadição , Preparações de Ação Retardada/química , Hidrogéis/química , Polietilenoglicóis/química
3.
Polymers (Basel) ; 12(2)2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32046029

RESUMO

Injectable, thermoresponsive hydrogels are promising candidates for the delivery, maintenance and controlled release of adoptive cell therapies. Therefore, there is significant interest in the development of cytocompatible and biodegradable thermoresponsive hydrogels with appropriate gelling characteristics. Towards this end, a series of thermoresponsive copolymers consisting of poly(caprolactone) (PCL), poly(ethylene glycol) (PEG) and poly(propylene glycol) (PPG) segments, with various PEG:PPG ratios, were synthesised via ring-opening polymerisation (ROP) of ε-caprolactone and epoxy-functionalised PEG and PPG derivatives. The resultant PCL-PEG-PPG copolymers were characterised via proton nuclear magnetic resonance (1H NMR) spectroscopy, gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). The thermoresponsive characteristics of the aqueous copolymer solutions at various concentrations was investigated using the inversion method. Whilst all of the copolymers displayed thermoresponsive properties, the copolymer with a ratio of 1:2 PEG:PPG exhibited an appropriate sol-gel transition (28 °C) at a relatively low concentration (10 wt%), and remained a gel at 37 °C. Furthermore, the copolymers were shown to be enzymatically degradable in the presence of lipases and could be used for the encapsulation of CD4+ T-cell lymphocytes. These results demonstrate that the thermoresponsive PCL-PEG-PPG hydrogels may be suitable for use as an adoptive cell therapy (ACT) delivery vehicle.

4.
Chem Sci ; 9(21): 4821-4829, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29910934

RESUMO

Pickering emulsions, also known as particle stabilized emulsions, are one kind of extremely important emulsion for both fundamental research and practical applications. Many colloidal particles have been utilized as emulsifiers to stabilize Pickering emulsions. However, the most challenging issue is preparing Pickering emulsions with highly hydrophilic particles, because their adsorption onto oil-water interfaces is either thermodynamically or kinetically unfavorable. Although several strategies have been developed to overcome the poor ability of the hydrophilic particles to stabilize the emulsions, surface modification and functionalization of the hydrophilic particles or a change in solvent (i.e. water phase) conditions such as pH and ionic strength is required. Herein, we present an effective and not yet explored strategy to stabilize Pickering emulsions with unmodified highly hydrophilic particles, strikingly, without changing the solvent conditions. The innovative aspect of the strategy presented here is the unconventional dispersion of hydrophilic particles in an oil phase before emulsification, while the results experimentally demonstrate the theoretical calculations predicted more than a decade ago. This study will promote the diversity of Pickering emulsions and expand their real-world applications.

5.
Polymers (Basel) ; 10(2)2018 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30966215

RESUMO

Porous polyester-ether hydrogel scaffolds (PEHs) were fabricated using acid chloride/alcohol chemistry and a salt templating approach. The PEHs were produced from readily available and cheap commercial reagents via the reaction of hydroxyl terminated poly(ethylene glycol) (PEG) derivatives with sebacoyl, succinyl, or trimesoyl chloride to afford ester cross-links between the PEG chains. Through variation of the acid chloride cross-linkers used in the synthesis and the incorporation of a hydrophobic modifier (poly(caprolactone) (PCL)), it was possible to tune the degradation rates and mechanical properties of the resulting hydrogels. Several of the hydrogel formulations displayed exceptional mechanical properties, remaining elastic without fracture at compressive strains of up to 80%, whilst still displaying degradation over a period of weeks to months. A subcutaneous rat model was used to study the scaffolds in vivo and revealed that the PEHs were infiltrated with well vascularised tissue within two weeks and had undergone significant degradation in 16 weeks without any signs of toxicity. Histological evaluation for immune responses revealed that the PEHs incite only a minor inflammatory response that is reduced over 16 weeks with no evidence of adverse effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...