Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nat Mater ; 18(12): 1303-1308, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31659292

RESUMO

Stacking order can influence the physical properties of two-dimensional van der Waals materials1,2. Here we applied hydrostatic pressure up to 2 GPa to modify the stacking order in the van der Waals magnetic insulator CrI3. We observed an irreversible interlayer antiferromagnetic-to-ferromagnetic transition in atomically thin CrI3 by magnetic circular dichroism and electron tunnelling measurements. The effect was accompanied by a monoclinic-to-rhombohedral stacking-order change characterized by polarized Raman spectroscopy. Before the structural change, the interlayer antiferromagnetic coupling energy can be tuned up by nearly 100% with pressure. Our experiment reveals the interlayer ferromagnetic ground state, which is established in bulk CrI3 but not observed in native exfoliated thin films. The observed correlation between the magnetic ground state and the stacking order is in good agreement with first principles calculations3-8 and suggests a route towards nanoscale magnetic textures by moiré engineering3,9.

2.
Sci Rep ; 5: 10308, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25988722

RESUMO

Three-dimensional topological insulators are materials that behave as an insulator in the interior, but as a metal on the surface with Dirac surface states protected by the topological properties of the bulk wavefunctions. The newly discovered second surface state, located about 1.5 eV above the conduction band in Bi2Se3 allows direct photoexcitation of the surface electrons in n-doped samples with a Ti:sapphire femtosecond laser. We have observed efficient THz generation from the Bi2Se3 basal plane upon femtosecond optical excitation. By performing polarization-resolved studies on the emitted THz spectrum, two emission mechanisms have been identified, namely, emission generated from the transient photocurrent under the influence of the surface depletion field and from nonlinear optical rectification. The two types of emission are governed by distinct selection rules. And while the former is characterized by a narrow-band spectrum, the latter, involving almost instantaneous optical transitions, has a broad bandwidth and is enhanced by the presence of resonant transitions. These two emission mechanisms are further separated by their distinct doping dependence upon exposure to ambient air. With surface selectivity, THz emission spectroscopy thus provides a valuable spectroscopic tool for studies of the optical conductivity and dynamics of the surface state in centrosymmetric Bi2Se3.

3.
Appl Phys Lett ; 103(18): 181119, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-24273329

RESUMO

We report on controlling the spontaneous emission (SE) rate of a molybdenum disulfide (MoS2) monolayer coupled with a planar photonic crystal (PPC) nanocavity. Spatially resolved photoluminescence (PL) mapping shows strong variations of emission when the MoS2 monolayer is on the PPC cavity, on the PPC lattice, on the air gap, and on the unpatterned gallium phosphide substrate. Polarization dependences of the cavity-coupled MoS2 emission show a more than 5 times stronger extracted PL intensity than the un-coupled emission, which indicates an underlying cavity mode Purcell enhancement of the MoS2 SE rate exceeding a factor of 70.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...