RESUMO
The aim of this study was to investigate the effect of hesperidin on the liver and kidney dysfunctions induced by nickel. The mice were divided into six groups: nickel treatment with 80 mg/kg, 160 mg/kg, 320 mg/kg hesperidin groups, 0.5% CMC-Na group, nickel group, and blank control group. Histopathological techniques, biochemistry, immunohistochemistry, and the TUNEL method were used to study the changes in structure, functions, oxidative injuries, and apoptosis of the liver and kidney. The results showed that hesperidin could alleviate the weight loss and histological injuries of the liver and kidney induced by nickel, and increase the levels of lactate dehydrogenase (LDH), alanine aminotransferase (GPT), glutamic oxaloacetic transaminase (GOT) in liver and blood urea nitrogen (BUN), creatinine (Cr) and N-acetylglucosidase (NAG) in kidney. In addition, hesperidin could increase the activities of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione peroxidase (GSH-Px) in the liver and kidney, decrease the content of malondialdehyde (MDA) and inhibit cell apoptosis. It is suggested that hesperidin could help inhibit the toxic effect of nickel on the liver and kidney.
RESUMO
Utilizing the framework of environmental health risk assessment and healing, the article reviews the effectiveness and potential of green space systems in mitigating the impact of high temperatures, promoting mental health, and improving the risk characteristics of high-temperature heat waves. We utilized CiteSpace software to conduct a time-zone analysis of the relationship between heatwaves, green spaces, and health using clustered data from 2001 to 2023. This study evaluates the role of green space systems in mitigating high temperatures and enhancing mental health within the environmental health risk assessment framework. Using CiteSpace software, we analyzed literature from 2001 to 2023, focusing on the interactions among heatwaves, green spaces, and health. Our results indicate that most existing research concentrates on hazard identification, with insufficient exploration of the dose-response relationships between green spaces and temperature reduction. Quantitative studies on green space design and spatial optimization are scarce, and guidance on effective configurations remains limited. Additionally, the health impacts of heatwaves vary by region, with a noticeable imbalance in research focus; Asia and Africa, in particular, are underrepresented in studies addressing heatwave effects. We conclude that effective mitigation strategies require: (1) a comprehensive environmental health risk assessment framework that integrates advanced methods like big data analysis and geospatial simulations to improve green space planning and design; (2) further theoretical exploration into the mechanisms by which green spaces regulate temperature and mental health, including detailed analysis of spatiotemporal patterns and the functional optimization of green space structures; and (3) the development of robust parameterized design guidance based on specific therapeutic dosages (green space stimulus) to optimize configurations and enhance the effectiveness of green spaces in mitigating adverse mental health impacts from deteriorating thermal environments. Future research should prioritize underrepresented regions, focusing on exposure levels, dose-response relationships, and high-temperature warning systems while fostering multidisciplinary collaboration to develop effective urban planning and climate adaptation strategies.
Assuntos
Saúde Mental , Medição de Risco , Humanos , Temperatura Alta , Saúde Ambiental/métodos , CidadesRESUMO
Emerging evidence has shown that daphnoretin, one of the main active ingredients of Daphne giraldii Nitsche, processes antitumor activities in several tumor cells (e.g., colon cancer, lung cancer, cervical cancer, and osteosarcoma). However, the antitumor effect and its mechanism in breast cancer are unexplored. In this study, our data indicated that daphnoretin obviously suppressed the proliferation of breast cancer MCF-7 and MDA-MB-231 cells. Further studies showed that daphnoretin remarkably increased the p21 level, decreased cyclin E and CDK2 levels, and then arrested the cell cycle at the S phase. Moreover, daphnoretin obviously lowered the BCL-2 level and raised the levels of BAX and cleaved caspase-9 and -3, leading to cell apoptosis. Furthermore, daphnoretin remarkably decreased the ratio of p-PI3K/PI3K and p-AKT/AKT in breast cancer cells. Collectively, these findings demonstrated that daphnoretin could suppress breast cancer cell proliferation through cell cycle arrest and inducing apoptosis, which is related to the PI3K/AKT pathway.
Assuntos
Neoplasias da Mama , Proteínas Proto-Oncogênicas c-akt , Humanos , Feminino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proliferação de Células , Apoptose , Ciclo Celular , Linhagem Celular TumoralRESUMO
The botanical constituents of Stellera chamaejasme Linn. exhibit various pharmacological and medicinal activities. Neochamaejasmin A (NCA), one main active constituent of S. chamaejasme, inhibits cell proliferation and induces cell apoptosis in several types of tumor cells. However, the antitumor effect of NCA on hepatocellular carcinoma cells is still unclear. In this study, NCA (36.9, 73.7, and 147.5 µM) significantly inhibited hepatoblastoma-derived HepG2 cell proliferation in a concentration-dependent manner. Hoechst 33258 staining and flow cytometry showed that apoptotic morphological changes were observed and the apoptotic rate was significantly increased in NCA-treated HepG2 cells, respectively. Additionally, the levels of Bax, cleaved caspase-3, and cytoplasmic cytochrome c were increased, while the level of Bcl-2 was decreased in NCA-treated HepG2 cells when compared with the control group. Moreover, we found that the reactive oxygen species (ROS) level was significantly higher and the mitochondrial membrane potential was remarkably lower in NCA-treated HepG2 cells than in the control group. Further studies demonstrated that the levels of p-JNK and p-ERK1/2 were significantly upregulated in NCA-treated HepG2 cells, and pretreatment with JNK and ERK1/2 inhibitors, SP600125 and PD0325901, respectively, suppressed NCA-induced cell apoptosis of HepG2 cells. In addition, NCA also significantly inhibited human hepatoma BEL-7402 cell proliferation and induced cell apoptosis through the ROS-mediated mitochondrial apoptotic pathway. These results implied that NCA induced mitochondrial-mediated cell apoptosis via ROS-dependent activation of the ERK1/2/JNK signaling pathway in HepG2 cells.